Home
Class 12
MATHS
If vec(a) = 3 hat (i) - 2 hat (j) + hat ...

If `vec(a) = 3 hat (i) - 2 hat (j) + hat (k) and vec(b) = hat (i) - 3 hat (j) + 4 hat (k) ` , find ` vec(a) xx vec (b)` and the area of the parallelogram whose adjacent sides are `vec (a) and vec (b) `

Promotional Banner

Topper's Solved these Questions

  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A (Choose the correct Question)|8 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A (Very Short aanswer type questions)|35 Videos
  • PROBABILITY

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS|18 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Assertion- Reason Type:|2 Videos

Similar Questions

Explore conceptually related problems

If vec (a)= 2 hat (i) - hat (j) + hat (k) and vec(b) = - hat (i) + 3 hat (j) + 4 hat (k) , then value of vec (a). vec(b) is -

If vec (a) = 2 hat (i) - hat (j ) and vec (b) = 3 hat (i) - 2 hat (j) + 4 hat (k) , then the value of vec (a) xx vec (b) is -

If vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec(b) = hat (i) + hat (j) - hat (k) and |vec (a) xx vec(b)| = sqrt(13 m ) then the value of m is -

If vec(a)=2hat(i)-5hat(j)+3hat(k) " and " vec(b)=hat(i)-2hat(j)-4hat(k) , find the value of abs(3vec(a)+2vec(b)).

If vec(a) = 2 hat (i) - hat (j) + 3 hat (k) and vec(b) = 3 hat (i) + hat (j) - 2 hat (k) , find the angle between the vectors (vec(a) + vec(b)) and (vec(a)-vec(b))

If vec(a) = hat (i) +hat (j) , vec (b) = hat(i) - hat(j) and vec(c ) = 5 hat (i) + 2 hat (j) + 3 hat(k) , find the value of [ vec(b)vec (c ) vec(a)]

If vec (a) = 4 hat (i) - 3 hat (k) and vec (b) = - 2 hat (i) + hat (j) + 2 hat (k) be two diagonals of parallelogram , then find its area .

if vec a= 5 hat i -hat j -3 hat k and vec b=hat i+3 hat j - 5 hat k , Find vec a . vec b =?

If vec a= 2 hat i- hat j+ hat k and vec b = - hat i+3 hat j+4 hat k ,then veca.vecb =

If vec (a) = 3 hat (i) + 2 hat (j) + 9 hat (k) and vec(b) = hat (i) + lambda hat (j) + 3 hat (k) , then find the value of lambda so that the vectors (vec(a) + vec(b)) and (vec(a) - vec(b)) are perpendicular to each other .