Home
Class 12
MATHS
For what values of p and q the vectors 2...

For what values of p and q the vectors `2 hat (i) + p hat (j) - 3 hat (k) ` and ` q hat (i) - 4 hat (j) + 2 hat (k) ` are parallel ?

Promotional Banner

Topper's Solved these Questions

  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A (Choose the correct Question)|8 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A (Very Short aanswer type questions)|35 Videos
  • PROBABILITY

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS|18 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Assertion- Reason Type:|2 Videos

Similar Questions

Explore conceptually related problems

Determine the values of p and q for which the vectors phat(i)+2hat(j)+6hat(k) " and " 3hat(i)-3hat(j)+qhat(k) are parallel.

The value of lamda for which the vectors vec(a) = hat(i) + 3hat(j) - hat(k) and hat(b) = 2hat(i) + 6hat(j) + lamda hat(k) are parallel is-

If vectors vec (a) = p hat (i) + 8 hat (j) + 6 hat (k) and vec (b) = - 3 hat (i) + 4 hat (j) + q hat (k) are parallel , find p and q

The scaler product of the vector hat (i) + hat (j) + hat (k) with the unit vector along the sum of vectors 2 hat (i) + 4 hat (j) - 5 hat (k) and lambda hat (i) + 2 hat (j) + 3 hat (k) is equal to one . Find the value of lambda

Find the area of the parallelogram whose Whose diagonals are the vectors 3 hat (i) + hat (j) - 2 hat (k) and hat (i) - 3 hat (j) + 4 hat (k)

Find the area of triangle (i) drawn on the vectors vec(a) = 6 hat (i) + 2 hat (j) - 3 hat (k) and vec (b) = 4 hat (i) - hat (j) - 2 hat (k)

Find the scalar and vector projections of 3 hat (i) - hat (j) + 4 hat (k) on 2 hat (i) + 3 hat (j) - 6 hat (k)

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

If (2hat (i) + 6 hat (j) + 27 hat (k) )xx (hat (i) + 3hat (j) + p hat (k)) = vec(0) , find p

The dot products of a vector with the vectors hat (i) - 3 hat(k) , hat (i) - 2hat (k) and hat (i) + hat (j)+ 4 hat (j) are 0,5,8 respectively . Find the vector .