Home
Class 12
MATHS
If vec (a) = 4 hat (i) - 3 hat (k) and v...

If `vec (a) = 4 hat (i) - 3 hat (k) and vec (b) = - 2 hat (i) + hat (j) + 2 hat (k) ` be two diagonals of parallelogram , then find its area .

Promotional Banner

Topper's Solved these Questions

  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A (Choose the correct Question)|8 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Exercise 2A (Very Short aanswer type questions)|35 Videos
  • PROBABILITY

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS|18 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Assertion- Reason Type:|2 Videos

Similar Questions

Explore conceptually related problems

If vec a= 4 hati- hat j-3hat k and vec b = -2 hat i+hat j+2 hat k are the two diagonals of a parallelogram, then find its area.

If vec (a) = 2 hat (i) - 3 hat (j) + 4 hat (k) and vec(b) = - 6 hat (i) + 9 hat (j) - 12 hat (k) , then

If vec (a) = 2 hat (i) - hat (j ) and vec (b) = 3 hat (i) - 2 hat (j) + 4 hat (k) , then the value of vec (a) xx vec (b) is -

If vectors vec (a) = p hat (i) + 8 hat (j) + 6 hat (k) and vec (b) = - 3 hat (i) + 4 hat (j) + q hat (k) are parallel , find p and q

If vec (a)= 2 hat (i) - hat (j) + hat (k) and vec(b) = - hat (i) + 3 hat (j) + 4 hat (k) , then value of vec (a). vec(b) is -

If vec a= 2 hat i- hat j+ hat k and vec b = - hat i+3 hat j+4 hat k ,then veca.vecb =

if vec a = 2 hat i- 3 hat j+hat k and vec b = hat i+2 hat j- 3hat k then vec aXvec b is

If vec(a) = 3 hat (i) - 2 hat (j) + hat (k) and vec(b) = hat (i) - 3 hat (j) + 4 hat (k) , find vec(a) xx vec (b) and the area of the parallelogram whose adjacent sides are vec (a) and vec (b)

Let vec (a) = 2 hat (i) - 2 hat (j) + hat (k) , vec (b) = hat (j) - hat (k) and vec(c ) = - hat (i) + 3 hat (j) + 2 hat (k) be three given vectors .Find sine of the angle vec(a) and vec (c )

If vec(a) = 2 hat (i) - hat (j) + 3 hat (k) and vec(b) = 3 hat (i) + hat (j) - 2 hat (k) , find the angle between the vectors (vec(a) + vec(b)) and (vec(a)-vec(b))