Home
Class 10
MATHS
In DeltaABC," m "angleBAC=90^(@)," seg "...

In `DeltaABC," m "angleBAC=90^(@)," seg " DEbot" side "AB, " seg "DFbot" side "AC," seg "ADbot" side "BC.`
Prove : `A(squareAEDF)=sqrt(AExxEBxxAFxxFC))`

Text Solution

Verified by Experts

The correct Answer is:
`thereforeA(squareAEDF)=sqrt(AExxEBxxAFxxFC))`
Promotional Banner

Topper's Solved these Questions

  • CHALLENGING QUESTIONS

    CHETAN PUBLICATION|Exercise Circle|9 Videos
  • CHALLENGING QUESTIONS

    CHETAN PUBLICATION|Exercise Geometric Constructions|6 Videos
  • CHALLENGING QUESTIONS

    CHETAN PUBLICATION|Exercise Similarity|9 Videos
  • ARITHMETIC PROGRESSION

    CHETAN PUBLICATION|Exercise ASSIGENMENT -3|10 Videos
  • CIRCLE

    CHETAN PUBLICATION|Exercise Assignment - 3 (Solve any two of the following questions):|3 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC,angleB=90^(@),"seg "DEbot"side " AC. AD=6,AB=12, AC=18, , then find AE.

Solve the following sub questions: In Delat ACB , angle ACB = 90^(@) "seg" CD bot side AB, A - D - B "seg" DE bot side CB. "Show that" CD^(2) xx AC =AD xx AB xx DE

In the adjoining figure "seg "Cebot" side " AB, " seg" AD bot" side " BC. Prove that (i) DeltaAEP~DeltaCDP (ii) DeltaAEP~DeltaADB

In DeltaABC,"seg " BD" bisects "angleABC and"Ray " CE" bisects " angleACB. "if seg "AB~="seg "AC then prove that ED||BC.

In Delta ABC, angle BAC = 90^(@), seg BL and seg CM are medians of Delta ABC prove that 4(BL^(2) + CM^(2)) = 5 BC^(2)

In trapezium ABCD, seg AB ||seg DC. Seg BD bot seg AD, seg AC bot seg BC. If AD = 15, BC = 15 and AB = 25, then find A ( square ABCD)

In the adjoining figure, seg AD bot side BC, seg BE bot side AC, segCf bot side AB . Point O is the orthocentre. Prove that, point O is the incentre of DeltaDEF

In DeltaABC , seg DE|| side BC. If 2A (DeltaADE)=A(squareDBCE) . Show that BC=sqrt(3)xxDE .

In Delta ABC, "seg" AD bot "seg" BC, DB = 3CD . Prove that: 2 AB^(2) = 2AC^(2) + BC^(2)

In Delta ABC , right angle is at B,AB = 5cm and angle ACB =30^(@) Determine the lengths of the sides BC and AC.