Home
Class 12
PHYSICS
A 280 days old radioactive shows an acti...

A 280 days old radioactive shows an activity of 6000 dps, 140 days later it's activity becomes 3000 dps. What was its initial activity ?

Text Solution

Verified by Experts


In the table , the last two values of activity are given. These are used to calculate the first two values .
Hence, initial activity = 24000 dps
Promotional Banner

Topper's Solved these Questions

  • ATOMIC NUCLEUS

    CHHAYA PUBLICATION|Exercise SECTION RELATED QUESTIONS|54 Videos
  • ATOMIC NUCLEUS

    CHHAYA PUBLICATION|Exercise HOTS QUESTION|14 Videos
  • ATOM

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|18 Videos
  • CAPACITANCE AND CAPACITOR

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|15 Videos

Similar Questions

Explore conceptually related problems

Define the Activity of a radioactive sample. Write its S.I. unit. A radioactive sample has activity of 10000 disintegrations per second (dps) after 20 hours. After next 10 hours its Activity reduces to 5000 dps. Find out its half-life and initial activity.

The half-life of iodine-131 is 8d. In how many days its activity will be 1/sqrt2 part of its initial value ?

The activity of a radioactive isotope falls to 12.5% in 90 days. Calculate the half life and decay constant.

What is meant by activity of a radioactive substance? Write its SI unit.

What is meant by activity of a radioactive sunstance? Write its SI unit.

The initial number of radioactive atoms in a radioactive sample is N_0 . If after time t the number of becomes N, then N=N_0e^(-lambdat) , where lambda is known as the decay constant of the element. The time in which the number of radioactive atoms becomes half of its initial number is called the half-life (T) of the element. The time in which the number of atoms falls to 1/e times of its initial number is the mean life (tau) of the element. The product lambdaN is the activity (A) of the radioactive sample when the number of atoms is N. The SI unit of activity is bequerel (Bq)' where 1 Bq = 1 decay. s^(-1) . The half-life of Iodine-131 is 8 d. What is the activity (in Bq) of 1 g of Iodine? (A) 2.3xx10^15 (B) 4.6xx10^15 (C) 6.9xx10^15 (D) 9.2xx10^15

The initial number of radioactive atoms in a radioactive sample is N_0 . If after time t the number of becomes N, then N=N_0e^(-lambdat) , where lambda is known as the decay constant of the element. The time in which the number of radioactive atoms becomes half of its initial number is called the half-life (T) of the element. The time in which the number of atoms falls to 1/e times of its initial number is the mean life (tau) of the element. The product lambdaN is the activity (A) of the radioactive sample when the number of atoms is N. The SI unit of activity is bequerel (Bq)' where 1 Bq= 1 decay. s^(-1) . After how many days the activity of Iodine-131 will be 1/16 th of its initial value. [The half-life of Iodine-131 is 8 d.] (A) 24 d (B) 32 d (C) 40 d (D) 48 d

The initial number of radioactive atoms in a radioactive sample is N_0 . If after time t the number of becomes N, then N=N_0e^(-lambdat) , where lambda is known as the decay constant of the element. The time in which the number of radioactive atoms becomes half of its initial number is called the half-life (T) of the element. The time in which the number of atoms falls to 1/e times of its initial number is the mean life (tau) of the element. The product lambdaN is the activity (A) of the radioactive sample when the number of atoms is N. The SI unit of activity is bequerel (Bq)' where 1 Bq = 1 decay. s^(-1) , and Avogadro's number, N=6.023xx10^23 What is the ratio of activity of same amount of sodium-24 to that of iodine-131? [half life of sodium-24 is 15h.] (A) 1/70 (B) 1/7 (C) 7 (D) 70

The initial number of radioactive atoms in a radioactive sample is N_0 . If after time t the number of becomes N, then N=N_0e^(-lambdat) , where lambda is known as the decay constant of the element. The time in which the number of radioactive atoms becomes half of its initial number is called the half-life (T) of the element. The time in which the number of atoms falls to 1/e times of its initial number is the mean life (tau) of the element. The product lambdaN is the activity (A) of the radioactive sample when the number of atoms is N. The SI unit of activity is bequerel (Bq)' where 1 Bq = 1 decay. s^(-1) , The half-life of Iodine-131 is 8d. Its decay constant (in SI) is - (A) 10^(-6) (B) 1.45xx10^(-6) (C) 2xx10^(-6) (D) 2.9xx10^(-6)

The initial number of radioactive atoms in a radioactive sample is N_0 . If after time t the number of becomes N, then N=N_0e^(-lambdat) , where lambda is known as the decay constant of the element. The time in which the number of radioactive atoms becomes half of its initial number is called the half-life (T) of the element. The time in which the number of atoms falls to 1/e times of its initial number is the mean life (tau) of the element. The product lambdaN is the activity (A) of the radioactive sample when the number of atoms is N. The SI unit of activity is bequerel (Bq)' where 1 Bq = 1 decay. s^(-1) . The half-life of Iodine-131 is 8 d. Its mean life (in SI) is - (A) 4.79xx10^5 s. (B) 6.912xx10^5 s. (C) 9.974 xx 10^5 s. (D) 22.96xx10^5 s.