Home
Class 12
PHYSICS
Find Q-value and kinetic energy of the e...

Find Q-value and kinetic energy of the emitted `alpha`-particle in the `alpha`-decay of (a)`._88^222Ra` and (b)`._86^220Rn`. Given , `m(._86^226Ra)` = 226.02540 u, `m(._26^222Rn)` = 222.01750 u, `m(._86^220Rn)` = 220.01137 u, `m(._84^216Po)` = 216.00189 u , `m(._2^4He)` =4.00260 u

Text Solution

Verified by Experts

(a)`._86^226Ra to ._86^222Rn + ._2^4He`
`therefore` Q-value =`m(._88^226Ra ) -[m(._86^222Rn)+ m(._2^4He)]`
=226.02540 - [222.0175 + 4.00260 ]
=0.0053 u = 0.0053 x 931.2 MeV
= 4.93 MeV
Kinetic energy of `alpha`-particle `=((A-4)/A) Q =(222-4)/222xx4.93`=4.84 MeV
(b)Similarly for `._86^220Rn` ,
Q-value = 6.41 MeV and kinetic energy of `alpha`-particle =6.29 MeV
Promotional Banner

Topper's Solved these Questions

  • ATOMIC NUCLEUS

    CHHAYA PUBLICATION|Exercise NCERT EXEMPLAR QUESTION|6 Videos
  • ATOMIC NUCLEUS

    CHHAYA PUBLICATION|Exercise EXERCISE|85 Videos
  • ATOMIC NUCLEUS

    CHHAYA PUBLICATION|Exercise HOTS QUESTION|14 Videos
  • ATOM

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|18 Videos
  • CAPACITANCE AND CAPACITOR

    CHHAYA PUBLICATION|Exercise CBSE SCANNER|15 Videos

Similar Questions

Explore conceptually related problems

Under certain circumstances , a nucleus can decay by emitting a particle more massive than an alpha -particle. Consider the following decay processes. (a) ._88^223Ra to ._82^209Pb + ._6^14C , (b) ._88^223Ra to ._86^219 Rn + ._2^4He Calculate the Q-values for these two decays and determine that both are energetically possible. m(._88^223Ra) =223.01850 u, m(._82^209Pb) =208.98107 u, m(._86^219Rn) = 219.00948 u, m(._6^14C) = 14.00324 u and m(._2^4He) =4.00260 u

The Q-value of a nuclear reaction A + b to C + d is defined by Q=[m_A + m_b -m_C -m_d]c^2 , where the masses refer to nuclear rest masses . Determine from the given data whether the following reactions are exothermic or endothermic . (a) ._1^1H + ._1^3H to ._1^2 H ._1^2 , (b) ._6^12C + ._6^12C to ._10^20Ne + ._2^4He Atomic masses are given to be m(._1^1H) = 1.007825 u, m(._1^2H) = 2.014102 u , m(._1^3H) =3.016049 u, m(._1^12C) =12.000000 u, m(._10^20Ne) =19.992439 u, m(._2^4He) =4.002603 u

The radionuclide ._6^11C decays according to ._6^11C to ._5^11B + e^(+) + v . T_(1//2) = 20.3 min. The maximum energy of emitted positron is 0.960 MeV. Calculate Q and compare it with the maximum energy of the positron emitted. Given : m(._6^11C) =11.01143 u, m(._5^11B) =11.009305 u, m_e = 0.000548 u

If 1 u = 1.66xx10^(-27) kg and average radius of a nucleus is 1.2xx10^(-15) m, then determine the radius and density of a Ra^226 nucleus.

Find the real value of m for which the substitution y=u^m will transform the differential equation 2x^4y(dy)/(dx)+y^4=4x^6 in to a homogeneous equation.