Home
Class 12
MATHS
veca=hati+3hat(j)-hatk" and "vecb=2hat(i...

`veca=hati+3hat(j)-hatk" and "vecb=2hat(i)+6hat(j)+lambdahatk`. If `veca" and "vecb` vectors are parallel, then the value of `lambda` is

A

3

B

-6

C

-3

D

-2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • QUESTIONS PAPER -2019

    CHHAYA PUBLICATION|Exercise WBJEE 2019|45 Videos
  • QUESTIONS PAPER -2019

    CHHAYA PUBLICATION|Exercise WBJEE 2019|45 Videos
  • QUESTION PAPER 2017

    CHHAYA PUBLICATION|Exercise UNIT-4|4 Videos
  • RANDOM VARIABLE AND ITS DISTRIBUTION

    CHHAYA PUBLICATION|Exercise Assertion Reason Type|8 Videos

Similar Questions

Explore conceptually related problems

If vectors vec(alpha)=2hat(i)+3hat(j)-6hat(k) " and " vec(beta)=phat(i)-hat(j)+2hat(k) are parallel, then the value of p is -

If vec a= 2 hat i- hat j+ hat k and vec b = - hat i+3 hat j+4 hat k ,then veca.vecb =

The position vectors of the points A,B,C and D are 3hat(i)-2hat(j)-hatk,2hat(i)-3hat(j)+2hat(k),5hat(i)-hatj+2hatk" and " 4hati-hatj+lambdahatk respectively. If the points A,B,C and D lie on a plane, the value of lambda is

If vec(a)=hat(i)+2hat(j)-hat(k) " and " vec(b)=3hat(i)+hat(j)-5hat(k) , find a unit vector in a direction parallel to vector (vec(a)-vec(b)) .

If vectors vec a= hat i+2 hat j- hat k , vec b=2 hat i- hat j+ hat k and vec c=lambda hat i+ hat j+2 hat k are coplanar, then find the value of (lambda-4) .

If veca=5hat(i)-hatj-3hat(k)" and "vecb=hati+3hat(j)-5hat(k) , show that veca+vecb and veca-vecb are perpendicular to each other.

If the vectors -4 hat (i)-6 hat (j) - 2 hat (k) , - hat (i) + 4hat (j) + 3hat (k) and - 8 hat (i) - hat (j) + lambda hat (k) are coplanar , then find the value of lambda

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

The sides of a parallelogram are 2hat(i)+4hat(j)-5hat(k) " and " hat(i)+2hat(j)+3hat(k) . Then the unit vector parallel to one of the diagonals is -

If veca=hati-2hatj+3hatk and vecb=-2hati+hatj-2hatk , then the value of |veca xx vecb| is -