Home
Class 12
MATHS
Let f(x) be a derivable function f'(x)gt...

Let f(x) be a derivable function `f'(x)gtf(x)" and " f(0)=0`. Then

A

`f(x)gt0" for all "x gt0`

B

`f(x)lt0" for all "x gt0`

C

no sign of `f(x)` can be ascertained

D

`f(x)` is a constant function

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • QUESTIONS PAPER -2019

    CHHAYA PUBLICATION|Exercise HS 2019 PART -B|10 Videos
  • QUESTION PAPER 2017

    CHHAYA PUBLICATION|Exercise UNIT-4|4 Videos
  • RANDOM VARIABLE AND ITS DISTRIBUTION

    CHHAYA PUBLICATION|Exercise Assertion Reason Type|8 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

Let f(x) be a derivable function satisfying f(x)=int_0^x e^tsin(x-t)dt and g(x)=f''(x)-f(x) Then the possible integers in the range of g(x) is_______

Let f (x) be a differentiable function and f '(1) =4,f'(2) =6 where f '(c ) means the derivative of function f(x) at x=c. Then lim _(hto0)(f(2 +2h +h^(2))-f(2))/(f (1+h-h^(2))-f(1)) is equal to-

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1 +x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g(x) be the function satisfying f(x)+g(x)=x^(2) .Prove that, int_(0)^(1)f(x)g(x)dx=(1)/(2)(2e-e^(2)-3)

Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g(x) be a function that satisfies f(x)+g(x)=x^(2) . Then the value of the integral int_(0)^(1) f(x)g(x) dx is equal to -

Let f(x+y)=f(x)+f(y)+2x y-1 for all real x and y and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, the prove that f(x)>0AAx in Rdot

CHHAYA PUBLICATION-QUESTIONS PAPER -2019-WBJEE 2019
  1. Consider the function f(x)cosx^2. Then

    Text Solution

    |

  2. lim(xto0+)(e^x+x)^((1)/(x))

    Text Solution

    |

  3. Let f(x) be a derivable function f'(x)gtf(x)" and " f(0)=0. Then

    Text Solution

    |

  4. Let f:[1,3] toR be a continuous function that is differentiable in (1,...

    Text Solution

    |

  5. Let a=min(x^2+2x+3:x inR) and b=lim(thetato0)(1-cos theta)/(theta^2). ...

    Text Solution

    |

  6. Let agtbgt0 and I(n)=a^((1)/n)-b^((1)/(n)),J(n)=(a-b)^((1/(n)) for all...

    Text Solution

    |

  7. If A and B are independent events , then P(B/A)=

    Text Solution

    |

  8. The position vectors of the points A,B,C and D are 3hat(i)-2hat(j)-hat...

    Text Solution

    |

  9. Find value of sin^-1(cos((33pi)/5))

    Text Solution

    |

  10. The system of equations lambdax+y+3z=0,2x+muy-z=0,5x+7y+z=0 has infini...

    Text Solution

    |

  11. Let f:XtoY and A,B are non-void subsets of Y, then

    Text Solution

    |

  12. Let S,T,U be three non-void sets and f:StoT,g:TtoU be so that g@f:StoU...

    Text Solution

    |

  13. Let f(x)=x^4-4x^3+4x^2+c, cinR, Then

    Text Solution

    |

  14. The graphs of the polynomial x^2-1 and cosx intersect

    Text Solution

    |

  15. A point is in motion along a hyperbola y=(10)/(x) so that its abscissa...

    Text Solution

    |

  16. Let In=int0^1x^ntan^(-1)xdx." Then prove that "(n+1)I(n)+(n-1)I(n-2)=p...

    Text Solution

    |

  17. Two particles A and B move from rest along a straight line with consta...

    Text Solution

    |

  18. The area bounded by y=x+1" and "y=cosx and the x-axis, is

    Text Solution

    |

  19. Let A=({:(3,0,3),(0,3,0),(3,0,3):}). Then the roots of the equation de...

    Text Solution

    |

  20. f and g be differentiable on the interval I and let a,b inI, altb. The...

    Text Solution

    |