Home
Class 12
MATHS
(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)...

`(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise EXERCISE 11|24 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise PART -A|30 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion -Reason Type )|2 Videos
  • DIFFERENTIATION

    CHHAYA PUBLICATION|Exercise Sample Questions for competitive Exams ( E Assertion-Reason Type )|1 Videos

Similar Questions

Explore conceptually related problems

Solve: (1+x^2)(dy)/(dx) = y+tan^(-1)x

(dy)/(dx)=e^(x-y)+1

(dy)/(dx)+1=e^(x-y)

(dy)/(dx)=tan^(2)(x+y)

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x)) ,-a < x < a

In each of the following cases find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dx): y=sqrt(tan^(-1)x) assuming tan^(-1)x=u .

Find (dy)/(dx) , when y="tan"^(-1)(x)/(1+sqrt(1-x^(2)))+sin(2 tan^(-1)sqrt((1-x)/(1+x)))

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and z=tan^(-1)((2x)/(1-x^(2))) , then (dy)/(dz) is equal to -

(dy)/(dx)=e^(x+y)+x^(2)e^(y)