Text Solution
Verified by Experts
The correct Answer is:
|
Topper's Solved these Questions
DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE
CHHAYA PUBLICATION|Exercise PART -B|14 VideosView PlaylistDIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE
CHHAYA PUBLICATION|Exercise PART -C|29 VideosView PlaylistDIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE
CHHAYA PUBLICATION|Exercise EXERCISE 11|24 VideosView PlaylistDETERMINANT
CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion -Reason Type )|2 VideosView PlaylistDIFFERENTIATION
CHHAYA PUBLICATION|Exercise Sample Questions for competitive Exams ( E Assertion-Reason Type )|1 VideosView Playlist
Similar Questions
Explore conceptually related problems
Knowledge Check
Similar Questions
Explore conceptually related problems
CHHAYA PUBLICATION-DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE -PART -A
- (x^(2)-yx^(2))(dy)/(dx)+y^(2)+xy^(2)=0
03:13
|
Playing Now - (dy)/(dx)=1+x+y+xy
04:45
|
Play - (1+y^(2))(1+logx)dx+xdy=0, given y=1, when x=1
04:59
|
Play - sinx(dy)/(dx)+y=y^(2)
05:23
|
Play - ydy+xe^(x)cos^(2)ydx=0
06:17
|
Play - (dy)/(dx)+1=e^(x-y)
05:15
|
Play - (dy)/(dx)=log(x+1)
03:38
|
Play - (dy)/(dx)=(y^(2)-y+1)/(x^(2)-x+1)
09:03
|
Play - (dy)/(dx)=(y^(2)-y-2)/(x^(2)+2x-3)
04:13
|
Play - cosylog(secx+tanx)dx=cosxlog(secy+tany)dy
05:34
|
Play - x^(2)(dy)/(dx)=y^(2)-5y+6
04:08
|
Play - xsqrt(y^(2)-1)dx-ysqrt(x^(2)-1)dy=0
03:46
|
Play - y(1-x^(2))dy=x(1+y^(2))dx
03:51
|
Play - cosx(1+cosy)dx-siny(1+sinx)dy=0
03:51
|
Play - (e^(x)+1)ydy-(y^(2)+1)e^(x)dx=0 , given y=0 when x=0
05:19
|
Play - xy(dy)/(dx)=(1+y^(2))/(1+x^(2))(1+x+x^(2))
04:39
|
Play - (e^(y)+1)cosxdx+e^(y)sinxdy=0
03:43
|
Play - (x+2)(dy)/(dx)=4x^(2)y
04:40
|
Play - (dy)/(dx)+(y(y-1))/((x-1))=0
02:58
|
Play - e^(x)tanydx+(1-e^(x))sec^(2)ydy=0
04:26
|
Play