Home
Class 12
MATHS
sqrt(1+x^(2))dy+sqrt(1+y^(2))dx=0...

`sqrt(1+x^(2))dy+sqrt(1+y^(2))dx=0`

Text Solution

Verified by Experts

The correct Answer is:
`(x+sqrt(x^(2)+1))(y+sqrt(y^(2)+1))=c`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise PART -A|30 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise PART -B|14 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise E ASSERTION-REASON TYPE|2 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion -Reason Type )|2 Videos
  • DIFFERENTIATION

    CHHAYA PUBLICATION|Exercise Sample Questions for competitive Exams ( E Assertion-Reason Type )|1 Videos

Similar Questions

Explore conceptually related problems

If x sqrt(1-y^(2))+y sqrt(1-x^(2))=k , then the value of (dy)/(dx) at x=0 is -

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , show that, (dy)/(dx)=(sqrt(1-y^(2)))/(sqrt(1-x^(2))) .

If sqrt(1-x^(2n))+sqrt(1-y^(2n))=a^(n)(x^(n)-y^(n)) , prove that, (dy)/(dx)=((x)/(y))^(n-1).sqrt((1-y^(2n))/(1-x^(2n))

If y=(x sin^(-1)x)/(sqrt(1-x^(2)))+log sqrt(1-x^(2)) , show that, (1-x^(2))^(2)(D^(2)y)/(dx^(2))-3x(1-x^(2)))(dy)/(dx)=1

The integrating factor of the linear differential equation (1-x^(2))^(2)(dy)/(dx) + sqrt(1-x^(2))y=x+sqrt(1-x^(2)) is -

If sqrt(1 -x^2) + sqrt(1-y^2) = a(x-y), show that, (dy)/(dx) = sqrtfrac(1-y^2)(1-x^2)

If y="tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) show that, (dy)/(dx)=(x)/(sqrt(1-x^(4)))

If y="tan"^(-1)(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) , then the value of (dy)/(dx) is -

dy/dx= (xsqrt(x^(2) - 1) -y )/sqrt(x^(2)-1) , given y = 1 when x = 1

If sqrt(1-x^(4))+sqrt(1-y^(4))=k(x^(2)-y^(2)) , prove that, (dy)/(dx)=(xsqrt(1-y^(4)))/(ysqrt(1-x^(4)))