Home
Class 12
MATHS
cosx(1+cosy)dx-siny(1+sinx)dy=0...

`cosx(1+cosy)dx-siny(1+sinx)dy=0`

Text Solution

Verified by Experts

The correct Answer is:
`|(1+sinx)(1+cosy)|+c=0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise PART -B|14 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise PART -C|29 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise EXERCISE 11|24 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion -Reason Type )|2 Videos
  • DIFFERENTIATION

    CHHAYA PUBLICATION|Exercise Sample Questions for competitive Exams ( E Assertion-Reason Type )|1 Videos

Similar Questions

Explore conceptually related problems

(cosy+ycosx)dx+(sinx-xsiny)dy=0

The solution of the differential equation cosx siny dx+sinx cosy dy=0 is -

The value of the expression 1-sin^2y/(1+cosy)+(1+cosy)/siny-siny/(1-cosy) is equal to

If (cos x)/(cosy)=n and (sinx)/(siny)=m , what is the value of (m^(2)-n^(2))sin^(2)y ?

prove that, |{:(1 ,cosx-sin x,cosx +sin x),(1,cos y-siny,cosy+sin y),(1,cosz-sinz ,cosz+sin z):}|=2|{:(1,cosx , sinx),(1,cosy,siny),(1,cosz,sinz):}|

Find dy/dx , tan^(-1){(cosx - sinx)/(cosx + sinx)} .

Obtain the general solution of the following equations : sinx(3-4sin^(2)x) cos2y - 2cosx siny cosy(4cos^(2)x-3) = 1/sqrt(3), (2cos^(2)x-1) cosy (4 cos^(2)y -3)-2sinx siny cosx(3-4sin^(2)y)=1

int_(0)^((pi)/(2))(cosx-sinx)/(1+sinxcosx)dx

The number of distinct real roots of |(sinx,cosx,cosx),(cosx,sinx,cosx),(cosx,cosx,sinx)|=0 in the interval -(pi)/(4)lexle(pi)/(4) is

If y=tan^(-1)""(cosx+sinx)/(cosx-sinx)," then find "(dy)/(dx).