Home
Class 12
MATHS
e^(x)tanydx+(1-e^(x))sec^(2)ydy=0...

`e^(x)tanydx+(1-e^(x))sec^(2)ydy=0`

Text Solution

Verified by Experts

The correct Answer is:
`tany=c(1-e^(x))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise PART -B|14 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise PART -C|29 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise EXERCISE 11|24 Videos
  • DETERMINANT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion -Reason Type )|2 Videos
  • DIFFERENTIATION

    CHHAYA PUBLICATION|Exercise Sample Questions for competitive Exams ( E Assertion-Reason Type )|1 Videos

Similar Questions

Explore conceptually related problems

e^(x) tan y dx + (1 - e^(x))sec^(2)y dy = 0

ydy+xe^(x)cos^(2)ydx=0

(e^(x) + e^(-x))dy - (e^(x) - e^(-x)) dx = 0

Solve: (dy)/(dx)-(tan y)/(1+x)=(1+x)e^(x)sec y

(e^(x)+1)ydy-(y^(2)+1)e^(x)dx=0 , given y=0 when x=0

Evaluate: int(e^(tan^(-1)x))/((1+x^2))[(sec^(-1)sqrt(1+x^2)+cos^(-1)((1-x^2)/(1+x^2))]dx,(x >0)dot

if int dx/(e^(x) (e^(x)+1)^(2))=(2e^(x)+1)/(e^(x)(e^(x)+1))+ k log|1+e^(-x)|+c then the value of k is -

If the curve satisfying (1+e^((x)/(y)))dx+e^((x)/(y))(1-(x)/(y))dy=0 passes through (1,1) then 9+y(2)e^((2)/(y(2)))-e is equal to-

(1+e^(2x))dy+e^(x)(1+y^(2))dx=0 it being given that y=1 when x=0

Evaluate : int (e^(2x-1)-e^(1-2x))/(e^(x+2)) dx