Home
Class 12
MATHS
If u=sqrt(a ^(2) cos ^(2) theta+b ^(2) s...

If `u=sqrt(a ^(2) cos ^(2) theta+b ^(2) sin ^(2) theta)+ sqrt( a^(2) sin ^(2) theta+b ^(2) cos ^(2) theta),` then the difference between the maximum and minimum values of `u^(2)` is-

A

`(a+ b)^(2)`

B

`2sqrt(a ^(2)+ b^(2))`

C

`2(a^(2)+ b ^(2))`

D

`(a- b)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MCQ's

    CHHAYA PUBLICATION|Exercise QUESTION PAPER 33|1 Videos
  • MCQ's

    CHHAYA PUBLICATION|Exercise QUESTION PAPER 3|90 Videos
  • MCQ's

    CHHAYA PUBLICATION|Exercise QUESTION PAPER 31|1 Videos
  • MCQ ZONE 3

    CHHAYA PUBLICATION|Exercise Question Paper 8|30 Videos
  • Measures of Central Tendency

    CHHAYA PUBLICATION|Exercise Exercise 2 C Very short answer type question|18 Videos

Similar Questions

Explore conceptually related problems

If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 cos^2 theta), then the difference between the maximum and minimum values of u^2 is given by : (a) (a-b)^2 (b) 2sqrt(a^2+b^2) (c) (a+b)^2 (d) 2(a^2+b^2)

If sin2 theta = cos 3 theta then theta =

Knowledge Check

  • The value of (sin ^(6)theta + cos ^(6) theta + 3sin^(2) theta cos ^(2)theta) is-

    A
    0
    B
    1
    C
    `-1`
    D
    2
  • Minimum value of (9 cos ^(2) theta + 16 sin ^(2) theta) is-

    A
    16
    B
    8
    C
    9
    D
    25
  • Let f(theta) = sqrt(a^2cos^2theta+b^2sin^2theta) + sqrt(a^2sin^2theta+b^2cos^2theta) Minimum value of [f(theta)]^2

    A
    `(a+b)^2`
    B
    `(a-b)^2`
    C
    `2(a^2+b^2)`
    D
    `2sqrt(a^2+b^2)
  • Similar Questions

    Explore conceptually related problems

    If sin theta = cos theta then 2 theta =

    int((sin theta-cos theta)d theta)/((sin theta+cos theta)sqrt(sin^(2) theta cos^(2)theta+sin theta cos theta))

    Solve 3 cos^2 theta - 2 sqrt3 sin theta cos theta - 3 sin^2 theta = 0

    Prove that, cos^(2) (theta + phi) - sin^(2) (theta - phi) = cos 2 theta cos 2 phi

    Let f(theta) = sqrt(a^2cos^2theta+b^2sin^2theta) + sqrt(a^2sin^2theta+b^2cos^2theta) Maximum value of [f(theta)]^2