Home
Class 12
MATHS
In a triangle sin^(4)A + sin^(4)B + sin^...

In a triangle `sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B`, then its angle A is equal to-

A

`30^(@)`

B

`120^(@)`

C

`150^(@)`

D

`60^(@)`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Integer Answer Type-|5 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Long Answer Type Questions|22 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion - Reason Type )|2 Videos
  • QUADRATIC EQUATIONS

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Exams (Assertion- Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

(i) If in a triangle ABC, a^(4) + b^(4) +c^(4) - 2b^(2) c^(2) -2c^(2)a^(2)=0 , then show that, C=45^(@) or 135^(@) . (ii) In in a triangle ABC, sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , show that, one of the angles of the triangle is 30^(@) or 150^(@)

If sin^(2)B+ sin^(2)C = sin^(2)A , then the triangle ABC is-

If in triangleABC ,sin^4A+sin^4B+sin^4C=sin^2Bsin^2C+2sin^2Csin^2A+2sin^2Asin^2B then show that angle A is either 30^@ or 150^@

In triangleABC sin^2A+sin^2B =sin^2C then angleC=

If in a triangle ABC, sin^2A+sin^2B+sin^2C=2 then the triangle is always

In any triangle ABC, the value of (b^(2)sin 2C + c^(2) sin 2B) is-

If in a triangle ABC ,(sin A+sin B +sin C)(sinA+sinB-sin C)=3sinAsinB then angle C is equal to

Simplify: sin (B + C) sin (B - C) + sin (C + A) sin (C - A) + sin(A + B) sin (A - B)

sin^2A+sin^2(A-B)+2sinAcosBsin(B-A) is equal to

In any triangle ABC, if sin^(2)A + sin^(2)B + sin^(2)C = 9/4 , show that the triangle is equilateral.