Home
Class 12
MATHS
If x=a+b, y= a alpha+b beta and z=a beta...

If `x=a+b, y= a alpha+b beta and z=a beta+balpha" "where" " " alpha and beta` are complex cube roots of unity, show that,
`xyz = a^(3)+b^(3).`

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    CHHAYA PUBLICATION|Exercise EXERCISE 4(LONG ANSWER TYPE QUESTION )|27 Videos
  • COMPLEX NUMBER

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTION FOR COMPETITIVEEXAMS(Multiple Corrrect Answer type)|7 Videos
  • COMPLEX NUMBER

    CHHAYA PUBLICATION|Exercise EXERCISE 4 (VERY SHORT ANSWER TYPE QUESTIONS)|34 Videos
  • CIRCLE

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (E. Assertion-Reason Type)|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion - Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

If x=a+b,y=a alpha+b beta and z=abeta+ b alpha , where alpha and beta are the imaginary cube roots ofunity, then xyz=

If alpha and beta are the complex cube roots of 1 show that, alpha^(4)+beta^(4)+alpha^(-1).beta^(-1)=0.

If alpha , beta be the imaginary cube root of unity, then show that alpha^4+beta^4+ alpha^-1beta^-1=0

If x cos alpha + y sin alpha = x cos beta + y sin beta "then" "tan" (alpha + beta)/2=

sin alpha + sin beta = a "and" cos alpha + cos beta = b cos (alpha + beta) =

sin alpha + sin beta = a "and" cos alpha + cos beta = b sin (alpha + beta) =

If alpha,beta be the imaginary cube root of unity, then the value of (alpha^4+alpha^2beta^2+beta^4) is

If alpha ne beta " and " a tan alpha + b tan beta = (a + b) "tan" (alpha + beta)/2,"show that" (cos alpha)/(cos beta) = a/b.

If alpha , beta , gamma in {1,omega,omega^(2)} (where omega and omega^(2) are imaginery cube roots of unity), then number of triplets (alpha,beta,gamma) such that |(a alpha+b beta+c gamma)/(a beta+b gamma+c alpha)|=1 is

If a sin alpha = b sin beta " then show that ", b cot alpha + a cot beta = (a+b) "cot"(alpha+beta)/2

CHHAYA PUBLICATION-COMPLEX NUMBER-EXERCISE 4(SHORT ANSWER TYPE QUESTION )
  1. Find the square roots : y+sqrt(y^(2)-x^(2)) (x6^(2)gt y^(2))

    Text Solution

    |

  2. Find the square roots : a^(2)+(1)/(a^(2))+4i(a+(1)/(a))-2

    Text Solution

    |

  3. If xsqrt2=1+sqrt-1, "find the value of " x^(6)+x^(4)+x^(2)+2.

    Text Solution

    |

  4. Show that one value of (sqrti+sqrt-i)is sqrt2.

    Text Solution

    |

  5. Prove that one value of (1+i)^(1//2)-(1-i)^(1//2)is isqrt2(sqrt2-1).

    Text Solution

    |

  6. Show that one value of (4+3i)^(-1//2)+(4-3i)^(-1//2) is (3sqrt2)/(5).

    Text Solution

    |

  7. If omega be an imaginary cube root of unity, show that, (1-omega)(1-...

    Text Solution

    |

  8. If omega be an imaginary cube root of unity, show that (1+omega-omega...

    Text Solution

    |

  9. If omega be an imaginary cube root of unity, show that (3+3omega+5omeg...

    Text Solution

    |

  10. If omega be an imaginary cube root of unity, show that (xomega^(2)+yom...

    Text Solution

    |

  11. If omega be an imaginary cube root of unity, show that (x+yomega+zomeg...

    Text Solution

    |

  12. If alpha=(-1-sqrt-3)/(2) and beta=(-1+sqrt(-3))/(2), "show that" al...

    Text Solution

    |

  13. Show that , ((-1+sqrt(-3))/(2))^(19)+((-1-sqrt(-3))/(2))^(19)=-1.

    Text Solution

    |

  14. If alpha and beta are the complex cube roots of 1 show that, alpha^(4)...

    Text Solution

    |

  15. Find the value of sqrt([-3+sqrt(({-3+sqrt(-3+... "to infinity"}})]])

    Text Solution

    |

  16. If omega be a complex cube root of unity and x=alpha+beta,y=alpha+beta...

    Text Solution

    |

  17. If x=a+b, y= a alpha+b beta and z=a beta+balpha" "where" " " alpha and...

    Text Solution

    |

  18. If z=x+iy and |z-1|^(2)+|z+1|^(2)=4, determine the position of the poi...

    Text Solution

    |

  19. Factorise : a^(2)-ab+b^(2)

    Text Solution

    |

  20. Factorise : x^(3)+y^(3)

    Text Solution

    |