Home
Class 12
MATHS
Whatever be the values of theta, prove t...

Whatever be the values of `theta`, prove that the locus of a point of intersection of the lines `x cos theta + y sin theta = a` and `x sin theta - y cos theta = b` is a circle.

Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    CHHAYA PUBLICATION|Exercise Exercise 3 (Multiple Choice Questions)|15 Videos
  • CIRCLE

    CHHAYA PUBLICATION|Exercise Exercise 3 (Very Short Answer Type Questions)|18 Videos
  • CALCULUS

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2014)|2 Videos
  • COMPLEX NUMBER

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTION FOR COMPETITIVE EXAMS(Multiple Corrrect Answer type)|11 Videos

Similar Questions

Explore conceptually related problems

Whatever be the values of theta , prove that the locus of the point of intersection of the straight lines y = x tan theta and x sin^(3) theta + y cos theta = a sin^(3) theta cos theta is a circle. Find the equation of the circle.

If sin theta = cos theta , what is sin theta - cos theta = ?

Eliminate theta : x=2 sin theta, y=3 cos theta.

The equation of the locus of the point of intersection of the straight lines x sin theta + (1- cos theta) y = a sin theta and x sin theta -(1+ cos theta) y + a sin theta =0 is:

If cos theta -4 sin theta =1, then the value of (sin theta+4 cos theta) is-

If 3 sin theta + 5 cos theta = 5 , then the value of 5 sin theta - 3 cos theta will be-

Find (dy)/(dx) if x= 2 cos theta - cos 2theta and y= 2sin theta - sin 2theta.

If cos theta + sin theta = sqrt2 cos theta , then cos theta - sin theta is___

If 2 sin theta cos theta = 1 , then find the value of sin theta-cos theta .