Home
Class 12
MATHS
If AX=B, where A={:[(3,1),(-1,2)],:}B={:...

If AX=B, where `A={:[(3,1),(-1,2)],:}B={:[(7,3),(0,6)],:}` then X=

A

`{:[(1,0),(2,3)]:}`

B

`{:[(0,3),(1,2)]:}`

C

`{:[(3,2),(0,1)]:}`

D

`{:[(2,0),(1,3)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( AX = B \) where \[ A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 7 & 3 \\ 0 & 6 \end{pmatrix} \] we need to find the matrix \( X \). ### Step 1: Find the Determinant of Matrix A First, we calculate the determinant of matrix \( A \): \[ \text{det}(A) = (3)(2) - (1)(-1) = 6 + 1 = 7 \] ### Step 2: Check if the Inverse Exists Since \( \text{det}(A) = 7 \) (which is not zero), the inverse of \( A \) exists. ### Step 3: Find the Inverse of Matrix A The inverse of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): \[ A^{-1} = \frac{1}{7} \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \] ### Step 4: Multiply Both Sides by \( A^{-1} \) Now, we can find \( X \) by multiplying both sides of the equation \( AX = B \) by \( A^{-1} \): \[ X = A^{-1}B \] ### Step 5: Calculate \( A^{-1}B \) Substituting the values we have: \[ X = \frac{1}{7} \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 7 & 3 \\ 0 & 6 \end{pmatrix} \] Now, we perform the matrix multiplication: 1. First row, first column: \[ (2)(7) + (-1)(0) = 14 + 0 = 14 \] 2. First row, second column: \[ (2)(3) + (-1)(6) = 6 - 6 = 0 \] 3. Second row, first column: \[ (1)(7) + (3)(0) = 7 + 0 = 7 \] 4. Second row, second column: \[ (1)(3) + (3)(6) = 3 + 18 = 21 \] Thus, we have: \[ X = \frac{1}{7} \begin{pmatrix} 14 & 0 \\ 7 & 21 \end{pmatrix} \] ### Step 6: Simplify the Result Now, we simplify \( X \): \[ X = \begin{pmatrix} \frac{14}{7} & \frac{0}{7} \\ \frac{7}{7} & \frac{21}{7} \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \] ### Final Result Thus, the matrix \( X \) is: \[ X = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|26 Videos
  • MATHEMATICAL LOGIC

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|78 Videos
  • PAIR OF STRAIGHT LINES

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|19 Videos

Similar Questions

Explore conceptually related problems

If AX=B, where {:A=[(-1,2),(2,-1)]:} , {:B=[(3),(1)]:} , then X=

Find the matrix X such that 2A-B+X=O , where A=[{:(3,1),(0,2):}]" and "B=[{:(-2,1),(0,3):}].

Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3,7),(2,5):}] and B=[{:(6,8),(7,9):}]

Verify (AB)^(-1)=B^(-1)A^(-1) for the matrices A and B where A=[{:(3,2),(7,5):}] and B=[{:(6,7),(8,9):}]

If A=[{:(1,2),(4,1),(5,6):}] and B=[{:(1,2),(6,4),(7,3):}] , then varify that (i) (A-B)'=A'-B'

Find f^(-1) if it exists: f: A->B where A={0,\ -1,\ -3,\ 2}; B= {-9,\ -3,\ 0,\ 6} and f(x)=3x .

If AxxB={(1,2),(1,3),(1,6),(7,2),(7,3),(7,6)} then find sets A and B.

Let X=[{:(x_(1)),(x_(2)),(x_(3)):}],A=[{:(1,-1,2),(2,0,1),(3,2,1):}] and B=[{:(3),(1),(4):}] .If AX=B, then X is equal to

MARVEL PUBLICATION-MATRICES-TEST YOUR GRASP
  1. If AX=B, where A={:[(3,1),(-1,2)],:}B={:[(7,3),(0,6)],:} then X=

    Text Solution

    |

  2. If A=[a(ij)](2xx2)" where "a(ij)=2i+j," then :"A=

    Text Solution

    |

  3. If A+3B={:[(1,2,3),(-2,3,5)]:}" and "2A+3B={:[(2,-1,4),(-1,5,2)]:}," t...

    Text Solution

    |

  4. If A and B are square matrices of order 3 such that det(A)=-2 and det(...

    Text Solution

    |

  5. If A is a non-singularmatrix such that A^(2)-A+I=O," then: "A^(-1)=

    Text Solution

    |

  6. If A=[(x,1),(1,0)] and A=A^(-1), then x= . . . .

    Text Solution

    |

  7. If AC=A" and "BA=B," then: "A^(2)=

    Text Solution

    |

  8. For a invertible matrix A if A(adjA)=[(10,0),(0,10)], then |A|=

    Text Solution

    |

  9. If A and B are square matrices of the same order such that A^(2)=A,B^(...

    Text Solution

    |

  10. If A={:[(2,3),(1,-1)]:}" and "A^(2)=A+B," then : "B=

    Text Solution

    |

  11. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  12. If A={:[(1,2),(3,4)]:}," then: " adj(adjA)=

    Text Solution

    |

  13. If A={:[(4,2),(5,3)]:}" then :"|adj(adjA)|=

    Text Solution

    |

  14. If A={:[(2,-1,1),(1,2,1),(-1,1,3)]:}" then "|adj(adjA)|=

    Text Solution

    |

  15. If A={:[(secx,tanx),(tanx,secx)]:}" and "A(adj*A)=k{:[(1,0),(0,1)]:},"...

    Text Solution

    |

  16. If A=[[0,1] , [-1,0]]=(alphaI+betaA)^2 then alpha and beta =

    Text Solution

    |

  17. If A={:[(2,1),(3,2)]:}" and "B={:[(1,2),(-1,3)]:}," then: "B^(-1)A=

    Text Solution

    |

  18. If A={:[(2,3),(1,2)]:}" and "B={:[(3,1),(1,0)]:}," then: "B^(-1)A^(-1)...

    Text Solution

    |

  19. If square matrices A and B are such that A^(2)=A,B^(2)=B and A,B commu...

    Text Solution

    |

  20. If A=[a(ij)](3xx3) is a scalar matrix such that a(ij)=5" for all "i=j,...

    Text Solution

    |

  21. If A={:[(1,a),(0,1)]:}," then, for all "ninN," matrix "A^(n)=

    Text Solution

    |