Home
Class 12
MATHS
If, in D={:[(a(1),b(1),c(1)),(a(2),b(2),...

If, in `D={:[(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))]:},` the co-factor of `a_(r)" is "A_(r),`then , `c_(1)A_(1)+c_(2)A_(2)+c_(3)A_(3)=`

A

0

B

`-|D|`

C

`|D|`

D

`|D|^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( c_1 A_1 + c_2 A_2 + c_3 A_3 \), where \( A_1, A_2, A_3 \) are the cofactors corresponding to the elements \( a_1, a_2, a_3 \) of the matrix \( D \). ### Step-by-Step Solution: 1. **Identify the Cofactors**: - The cofactor \( A_r \) of an element \( a_r \) in a matrix is given by: \[ A_r = (-1)^{r+c} \cdot M_{rc} \] where \( M_{rc} \) is the determinant of the submatrix formed by deleting the \( r \)-th row and \( c \)-th column. 2. **Calculate \( A_1 \)**: - For \( A_1 \) (cofactor of \( a_1 \)): \[ A_1 = (-1)^{1+1} \cdot \text{det}\begin{pmatrix} b_2 & c_2 \\ b_3 & c_3 \end{pmatrix} = \text{det}\begin{pmatrix} b_2 & c_2 \\ b_3 & c_3 \end{pmatrix} = b_2 c_3 - b_3 c_2 \] 3. **Calculate \( A_2 \)**: - For \( A_2 \) (cofactor of \( a_2 \)): \[ A_2 = (-1)^{2+1} \cdot \text{det}\begin{pmatrix} b_1 & c_1 \\ b_3 & c_3 \end{pmatrix} = -\text{det}\begin{pmatrix} b_1 & c_1 \\ b_3 & c_3 \end{pmatrix} = - (b_1 c_3 - b_3 c_1) = b_3 c_1 - b_1 c_3 \] 4. **Calculate \( A_3 \)**: - For \( A_3 \) (cofactor of \( a_3 \)): \[ A_3 = (-1)^{3+1} \cdot \text{det}\begin{pmatrix} b_1 & c_1 \\ b_2 & c_2 \end{pmatrix} = \text{det}\begin{pmatrix} b_1 & c_1 \\ b_2 & c_2 \end{pmatrix} = b_1 c_2 - b_2 c_1 \] 5. **Substitute into the Expression**: - Now substitute \( A_1, A_2, A_3 \) into the expression \( c_1 A_1 + c_2 A_2 + c_3 A_3 \): \[ c_1 A_1 + c_2 A_2 + c_3 A_3 = c_1 (b_2 c_3 - b_3 c_2) + c_2 (b_3 c_1 - b_1 c_3) + c_3 (b_1 c_2 - b_2 c_1) \] 6. **Expand the Expression**: - Expanding gives: \[ = c_1 b_2 c_3 - c_1 b_3 c_2 + c_2 b_3 c_1 - c_2 b_1 c_3 + c_3 b_1 c_2 - c_3 b_2 c_1 \] 7. **Combine Like Terms**: - Notice that terms cancel out: \[ = (c_1 b_2 c_3 - c_3 b_2 c_1) + (c_2 b_3 c_1 - c_1 b_3 c_2) + (c_3 b_1 c_2 - c_2 b_1 c_3) = 0 \] ### Final Result: Thus, we conclude that: \[ c_1 A_1 + c_2 A_2 + c_3 A_3 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|26 Videos
  • MATHEMATICAL LOGIC

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|78 Videos
  • PAIR OF STRAIGHT LINES

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|19 Videos

Similar Questions

Explore conceptually related problems

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is

suppose D= |{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(a_(3),,b_(3),,c_(3)):}| and Dprime= |{:(a_(1)+pb_(1),,b_(1)+qc_(1),,c_(1)+ra_(1)),(a_(2)+pb_(2),,b_(2)+qc_(2),,c_(2)+ra_(2)),(a_(3)+pb_(3),,b_(3)+qc_(3),,c_(3)+ra_(3)):}| . Then

Show that |{:(ma_(1),b_(1),nc_(1)),(ma_(2),b_(2),nc_(2)),(ma_(3),b_(3),nc_(3)):}|=-mn|{:(c_(1),b_(1),a_(1)),(c_(2),b_(2),a_(2)),(c_(3),b_(3),a_(3)):}|

If |[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(3),c_(3)]|=5, then the value of |[b_(2)c_(3)-b_(3)c_(2),a_(3)c_(2)-a_(2)c_(3),a_(2)b_(3)-a_(3)b_(2)],[b_(3)c_(1)-b_(1)c_(3),a_(1)c_(3)-a_(3)c_(1),a_(3)b_(1)-a_(1)b_(3)],[b_(1)c_(2)-b_(2)c_(1),a_(2)c_(1)-a_(1)c_(2),a_(1)b_(2)-a_(2)b_(1)]| is

In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(1),c_(2)),(b_(x3,c_(3)):}|+b_(1)|{:(a_(2),c_(2)),(a_(2),c_(2)):}|+c_(1)|{:(b_(x),c_(2)),(b_(2),c_(2)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column The value of for which determinant |{:(2,3,-1),(-1,-2,k),(1,-4,1):}| vanishes, is

In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(1),c_(2)),(b_(x3,c_(3)):}|+b_(1)|{:(a_(2),c_(2)),(a_(2),c_(2)):}|+c_(1)|{:(b_(x),c_(2)),(b_(2),c_(2)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column The value of the determinant |{:(2,3,4),(6,5,7),(1,-3,2):}|is:

In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(1),c_(2)),(b_(x3,c_(3)):}|+b_(1)|{:(a_(2),c_(2)),(a_(2),c_(2)):}|+c_(1)|{:(b_(x),c_(2)),(b_(2),c_(2)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column. The vaue of the determinant |{:(5,1),(3,2):}|is:

MARVEL PUBLICATION-MATRICES-TEST YOUR GRASP
  1. If, in D={:[(a(1),b(1),c(1)),(a(2),b(2),c(2)),(a(3),b(3),c(3))]:}, the...

    Text Solution

    |

  2. If A=[a(ij)](2xx2)" where "a(ij)=2i+j," then :"A=

    Text Solution

    |

  3. If A+3B={:[(1,2,3),(-2,3,5)]:}" and "2A+3B={:[(2,-1,4),(-1,5,2)]:}," t...

    Text Solution

    |

  4. If A and B are square matrices of order 3 such that det(A)=-2 and det(...

    Text Solution

    |

  5. If A is a non-singularmatrix such that A^(2)-A+I=O," then: "A^(-1)=

    Text Solution

    |

  6. If A=[(x,1),(1,0)] and A=A^(-1), then x= . . . .

    Text Solution

    |

  7. If AC=A" and "BA=B," then: "A^(2)=

    Text Solution

    |

  8. For a invertible matrix A if A(adjA)=[(10,0),(0,10)], then |A|=

    Text Solution

    |

  9. If A and B are square matrices of the same order such that A^(2)=A,B^(...

    Text Solution

    |

  10. If A={:[(2,3),(1,-1)]:}" and "A^(2)=A+B," then : "B=

    Text Solution

    |

  11. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  12. If A={:[(1,2),(3,4)]:}," then: " adj(adjA)=

    Text Solution

    |

  13. If A={:[(4,2),(5,3)]:}" then :"|adj(adjA)|=

    Text Solution

    |

  14. If A={:[(2,-1,1),(1,2,1),(-1,1,3)]:}" then "|adj(adjA)|=

    Text Solution

    |

  15. If A={:[(secx,tanx),(tanx,secx)]:}" and "A(adj*A)=k{:[(1,0),(0,1)]:},"...

    Text Solution

    |

  16. If A=[[0,1] , [-1,0]]=(alphaI+betaA)^2 then alpha and beta =

    Text Solution

    |

  17. If A={:[(2,1),(3,2)]:}" and "B={:[(1,2),(-1,3)]:}," then: "B^(-1)A=

    Text Solution

    |

  18. If A={:[(2,3),(1,2)]:}" and "B={:[(3,1),(1,0)]:}," then: "B^(-1)A^(-1)...

    Text Solution

    |

  19. If square matrices A and B are such that A^(2)=A,B^(2)=B and A,B commu...

    Text Solution

    |

  20. If A=[a(ij)](3xx3) is a scalar matrix such that a(ij)=5" for all "i=j,...

    Text Solution

    |

  21. If A={:[(1,a),(0,1)]:}," then, for all "ninN," matrix "A^(n)=

    Text Solution

    |