Home
Class 12
MATHS
Inverse of the matrix {:[(cosalpha,-sina...

Inverse of the matrix `{:[(cosalpha,-sinalpha,0),(sinalpha,cosalpha ,0),(0,0,1)]:}` is

A

`{:[(-cosalpha,sinalpha,0),(sinalpha,cosalpha ,0),(0,0,1)]:}`

B

`{:[(cosalpha,sinalpha,0),(-sinalpha,cosalpha ,0),(0,0,1)]:}`

C

`{:[(cosalpha,sinalpha,0),(sinalpha,-cosalpha ,0),(0,0,1)]:}`

D

`{:[(0,-1,0),(1,0,0),(0,0,1)]:}`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|26 Videos
  • MATHEMATICAL LOGIC

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|78 Videos
  • PAIR OF STRAIGHT LINES

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|19 Videos

Similar Questions

Explore conceptually related problems

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

Let F(alpha)=[{:(cosalpha,-sinalpha,0),(sinalpha,cosalpha,0),(0,0,1):}] and G(beta)=[{:(cosbeta,0,sinbeta),(0,1,0),(-sinbeta,0,cosbeta):}] . Show that [F(alpha).G(beta)]^(-1)=G(-beta).F(-alpha) .

If F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] and G(beta)=[(cosbeta, 0, sinbeta),(0, 1, 0),(-sinbeta, 0, cosbeta)], then [F(alpha)G(beta)]^-1 is equal to (A) F(-alpha)G(-beta) (B) G(-beta)F(-alpha0 (C) F(alpha^-1)G(beta^-1) (D) G(beta^-1)F(alpha^-1)

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.

If A = [(0,-tan(alpha//2)),(tan(alpha//2),0)] and I is a 2xx2 unit matrix, prove that I+A=(I-A)[(cosalpha,-sinalpha),(sinalpha,cosalpha)]

Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

MARVEL PUBLICATION-MATRICES-TEST YOUR GRASP
  1. Inverse of the matrix {:[(cosalpha,-sinalpha,0),(sinalpha,cosalpha ,0)...

    Text Solution

    |

  2. If A=[a(ij)](2xx2)" where "a(ij)=2i+j," then :"A=

    Text Solution

    |

  3. If A+3B={:[(1,2,3),(-2,3,5)]:}" and "2A+3B={:[(2,-1,4),(-1,5,2)]:}," t...

    Text Solution

    |

  4. If A and B are square matrices of order 3 such that det(A)=-2 and det(...

    Text Solution

    |

  5. If A is a non-singularmatrix such that A^(2)-A+I=O," then: "A^(-1)=

    Text Solution

    |

  6. If A=[(x,1),(1,0)] and A=A^(-1), then x= . . . .

    Text Solution

    |

  7. If AC=A" and "BA=B," then: "A^(2)=

    Text Solution

    |

  8. For a invertible matrix A if A(adjA)=[(10,0),(0,10)], then |A|=

    Text Solution

    |

  9. If A and B are square matrices of the same order such that A^(2)=A,B^(...

    Text Solution

    |

  10. If A={:[(2,3),(1,-1)]:}" and "A^(2)=A+B," then : "B=

    Text Solution

    |

  11. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  12. If A={:[(1,2),(3,4)]:}," then: " adj(adjA)=

    Text Solution

    |

  13. If A={:[(4,2),(5,3)]:}" then :"|adj(adjA)|=

    Text Solution

    |

  14. If A={:[(2,-1,1),(1,2,1),(-1,1,3)]:}" then "|adj(adjA)|=

    Text Solution

    |

  15. If A={:[(secx,tanx),(tanx,secx)]:}" and "A(adj*A)=k{:[(1,0),(0,1)]:},"...

    Text Solution

    |

  16. If A=[[0,1] , [-1,0]]=(alphaI+betaA)^2 then alpha and beta =

    Text Solution

    |

  17. If A={:[(2,1),(3,2)]:}" and "B={:[(1,2),(-1,3)]:}," then: "B^(-1)A=

    Text Solution

    |

  18. If A={:[(2,3),(1,2)]:}" and "B={:[(3,1),(1,0)]:}," then: "B^(-1)A^(-1)...

    Text Solution

    |

  19. If square matrices A and B are such that A^(2)=A,B^(2)=B and A,B commu...

    Text Solution

    |

  20. If A=[a(ij)](3xx3) is a scalar matrix such that a(ij)=5" for all "i=j,...

    Text Solution

    |

  21. If A={:[(1,a),(0,1)]:}," then, for all "ninN," matrix "A^(n)=

    Text Solution

    |