Home
Class 12
MATHS
If A=[[0,1] , [-1,0]]=(alphaI+betaA)^2 t...

If `A=[[0,1] , [-1,0]]=(alphaI+betaA)^2` then `alpha` and `beta` =

A

`a=b=pmsqrt(2)`

B

`a=b=pm(1)/(sqrt(2))`

C

`a=b=pm(1)/(sqrt(3))`

D

`aneb`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|26 Videos
  • MATHEMATICAL LOGIC

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|78 Videos
  • PAIR OF STRAIGHT LINES

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|19 Videos

Similar Questions

Explore conceptually related problems

A=[(1,2),(-4,1)] , A^-1=alphaI+betaA then find the value of alpha+beta

If the matrix A=[[1,0,0] , [0,2,0], [3,0,-1]] satisfies the equation A^(20)+alpha A^(19)+beta A = [[1,0,0] , [0,4,0] , [0,0,1]] for some real numbers alpha and beta then beta-alpha=

A=[(1,0,0),(0,alpha,beta),(0,beta,alpha)] and abs(2A)^3=2^21 then find alpha (alpha, beta inI^+)

If alpha,beta, are roots of the equation x^(2)+sqrt(x)alpha+beta=0,beta beta then values of alpha and beta are 1. alpha=1 and beta=12 .alpha=1 and beta=-2 3.alpha=2 and beta=1alpha=2 and beta=-2

Let A=[(0,2),(0,0)]and (A+1)^100 -100A=[(alpha,beta),(gamma,delta)], then alpha+beta+gamma+delta=...

M=[{:(sin^(4)theta,-1-sin^(2)theta),(1+cos^(2)theta,cos^(4)theta):}]=alphaI+betaM^(-1) Where alpha=alpha(theta) and beta=beta(theta) ar real numbers and I is an identity matric of 2xx2 if alpha^(**)= min of set {alpha(theta):thetain[0.2pi)} and beta^(**)= min of set {beta(theta):thetain[0.2pi)} Then value of alpha^(**)+beta^(**) is

If : sin (alpha + beta)=1 and sin (alpha-beta)=(1)/(2), "then" : tan (alpha+2beta)*tan(2alpha+beta)= A)-1 B)0 C)1 D)2

sin(alpha+beta)=1 and sin(alpha-beta)=(1)/(2)quad 0<=alpha,beta,<=(pi)/(2), then find tan(alpha+2 beta) and tan(2 alpha+beta)

If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) where alpha,beta in[0,(pi)/(2)], then tan(alpha+2 beta)tan(2 alpha+beta) is equal to

MARVEL PUBLICATION-MATRICES-TEST YOUR GRASP
  1. For a invertible matrix A if A(adjA)=[(10,0),(0,10)], then |A|=

    Text Solution

    |

  2. If A and B are square matrices of the same order such that A^(2)=A,B^(...

    Text Solution

    |

  3. If A={:[(2,3),(1,-1)]:}" and "A^(2)=A+B," then : "B=

    Text Solution

    |

  4. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  5. If A={:[(1,2),(3,4)]:}," then: " adj(adjA)=

    Text Solution

    |

  6. If A={:[(4,2),(5,3)]:}" then :"|adj(adjA)|=

    Text Solution

    |

  7. If A={:[(2,-1,1),(1,2,1),(-1,1,3)]:}" then "|adj(adjA)|=

    Text Solution

    |

  8. If A={:[(secx,tanx),(tanx,secx)]:}" and "A(adj*A)=k{:[(1,0),(0,1)]:},"...

    Text Solution

    |

  9. If A=[[0,1] , [-1,0]]=(alphaI+betaA)^2 then alpha and beta =

    Text Solution

    |

  10. If A={:[(2,1),(3,2)]:}" and "B={:[(1,2),(-1,3)]:}," then: "B^(-1)A=

    Text Solution

    |

  11. If A={:[(2,3),(1,2)]:}" and "B={:[(3,1),(1,0)]:}," then: "B^(-1)A^(-1)...

    Text Solution

    |

  12. If square matrices A and B are such that A^(2)=A,B^(2)=B and A,B commu...

    Text Solution

    |

  13. If A=[a(ij)](3xx3) is a scalar matrix such that a(ij)=5" for all "i=j,...

    Text Solution

    |

  14. If A={:[(1,a),(0,1)]:}," then, for all "ninN," matrix "A^(n)=

    Text Solution

    |

  15. If A={:[(0,5),(4,0)]:}" and "A^(-1)=kA," then: "k=

    Text Solution

    |

  16. If f(x)=1+x+x^(2)+x^(3)" and "A={:[(0,3),(0,0)]:}," then: "f(A)=

    Text Solution

    |

  17. If A=-BAB^(-1)," then: "(A+B)^(2)=

    Text Solution

    |

  18. If omega is a complex cube -root of unity and A'={:[(omega),(omega)]:}...

    Text Solution

    |

  19. If det(adjA)=|A|^(2), then the order of matrix A is

    Text Solution

    |

  20. If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:}, then A^2 is equal to

    Text Solution

    |