Home
Class 12
MATHS
If diagonals of a parallelogram ABCD int...

If diagonals of a parallelogram ABCD intersect each other in M, then `bar(OA) + bar(OB) + bar(OC) + bar(OD)` =

A

`bar(OM)`

B

2`bar(OM)`

C

3`bar(OM)`

D

4`bar(OM)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for the sum of the position vectors of the vertices of the parallelogram ABCD, given that the diagonals intersect at point M. ### Step-by-Step Solution: 1. **Understanding the Position Vectors**: Let the position vectors of points A, B, C, and D be denoted as \(\vec{A}\), \(\vec{B}\), \(\vec{C}\), and \(\vec{D}\) respectively. The diagonals of the parallelogram intersect at point M. 2. **Using the Properties of Parallelograms**: In a parallelogram, the diagonals bisect each other. Therefore, the position vector of point M can be expressed as: \[ \vec{M} = \frac{\vec{A} + \vec{C}}{2} = \frac{\vec{B} + \vec{D}}{2} \] 3. **Expressing the Sum of Position Vectors**: We need to calculate \(\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD}\). The position vector of the origin O is denoted as \(\vec{O}\). Thus, we can express: \[ \vec{OA} = \vec{A} - \vec{O}, \quad \vec{OB} = \vec{B} - \vec{O}, \quad \vec{OC} = \vec{C} - \vec{O}, \quad \vec{OD} = \vec{D} - \vec{O} \] 4. **Combining the Vectors**: Now, we can combine these vectors: \[ \vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = (\vec{A} - \vec{O}) + (\vec{B} - \vec{O}) + (\vec{C} - \vec{O}) + (\vec{D} - \vec{O}) \] Simplifying this, we get: \[ = \vec{A} + \vec{B} + \vec{C} + \vec{D} - 4\vec{O} \] 5. **Using the Diagonal Properties**: Since \(\vec{M} = \frac{\vec{A} + \vec{C}}{2}\) and \(\vec{M} = \frac{\vec{B} + \vec{D}}{2}\), we can express \(\vec{A} + \vec{C}\) and \(\vec{B} + \vec{D}\) as: \[ \vec{A} + \vec{C} = 2\vec{M}, \quad \vec{B} + \vec{D} = 2\vec{M} \] Therefore, we can substitute: \[ \vec{A} + \vec{B} + \vec{C} + \vec{D} = (\vec{A} + \vec{C}) + (\vec{B} + \vec{D}) = 2\vec{M} + 2\vec{M} = 4\vec{M} \] 6. **Final Expression**: Substituting this back into our earlier equation: \[ \vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = 4\vec{M} - 4\vec{O} = 4(\vec{M} - \vec{O}) \] ### Conclusion: Thus, the final result is: \[ \vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = 4(\vec{M} - \vec{O}) \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    MARVEL PUBLICATION|Exercise PREVIOUS YEARS MHT-CET EXAM QUESTIONS|10 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.3|13 Videos

Similar Questions

Explore conceptually related problems

If ABCD is a square, then bar(AB) + 2 bar(BC) + 3 bar(CD) + 4 bar(DA) =

If ABCDE is a pentagon, then bar(AB) + bar(AE) + bar(BC) + bar(DC) + bar(ED) =

Let PQRS be a parallelogram whose diagonals PR and QS intersect at O'. IF O is the origin then : bar(OP) + bar(OQ) + bar(OR) + bar(OS) =

Diagonals AC and BD of a parallelogram ABCD intersect each other at O. If OA= 3 cm and OD = 2 cm, determine the lengths of AC and BD.

ABCD is a parallelogram whose diagonals meet at P. If O is a fixed point, then bar(OA)+bar(OB)+bar(OC)+bar(OD) equals :

If E is the intersection point of diagonals of parallelogram ABCD and vec( OA) + vec (OB) + vec (OC) + vec (OD) = xvec (OE) where O is origin then x=

Let G be the centroid of a triangle ABC and O be any other point, then bar(OA)+bar(OB)+bar(OC) is equal to

M and N are mid-point of the diagnols AC and BD respectivley of quadrilateral ABCD, then bar(AB) + bar(AD)+bar(CB)+bar(CD) =

If ABCD is a square then, 2bar(AB)+4bar(BC)+5bar(CD)+7bar(DA)=

MARVEL PUBLICATION-VECTORS-TEST YOUR GRASP
  1. If diagonals of a parallelogram ABCD intersect each other in M, then b...

    Text Solution

    |

  2. If ABCDEF is a regular hexagon , then bar(AB) + bar(AC) + bar(AE) + ...

    Text Solution

    |

  3. If the origin is the centroid of a triangle ABC having vertices A(a ,1...

    Text Solution

    |

  4. If alpha,beta ,gamma are direction angles of a line , then cos 2alpha ...

    Text Solution

    |

  5. If |bar(u)| = sqrt(3) and bar(u) is equally inclined to co - ordinate...

    Text Solution

    |

  6. If vectors 2i-j+k,i+2j-3k and 3i+aj+5k are coplaner, then a=

    Text Solution

    |

  7. If bara.i = 4, then bara.[j xx (2j - 3k)]=

    Text Solution

    |

  8. The vector bar(AB)=3hati+4hatk and bar(AC)=5hati-2hatj+4hatk are the s...

    Text Solution

    |

  9. If veca vecb are non zero and non collinear vectors, then [(veca, vecb...

    Text Solution

    |

  10. If bara,barb,barc are non-coplaner vectors and barp=(barbxxbarc)/([bar...

    Text Solution

    |

  11. If direction ratios of two lines are 2,-6,-3 and 4,3,-1 then directi...

    Text Solution

    |

  12. If the volumes of parallelepiped with coterminus edges -pj+5k,i-j+qk a...

    Text Solution

    |

  13. A line makes 45^(@) with OX, and equal angles with OY and OZ. Then the...

    Text Solution

    |

  14. If the points with position vectors -i + 3j + 2k , -4i + 2j - 2k and 5...

    Text Solution

    |

  15. If bara.barb=barb.barc=barc.bara=0 and bara,barb,barc form a right-han...

    Text Solution

    |

  16. If bara,barb,barc are non-coplaner vectors, then (bara.(barbxxbarc))/...

    Text Solution

    |

  17. i · (j xx k) + j · (k xx i) + k · (i xx j ) =

    Text Solution

    |

  18. If bara=2i+3j-k,barb=-i+2j-4k and barc=i+j+k, then (baraxxbarb).(barax...

    Text Solution

    |

  19. If vectors 2hati-hatj+hatk ,hati+2hatj-3hatk and 3hati+mhatj+5hatk are...

    Text Solution

    |

  20. 2i · (j xx k) - 3j · (i xx k) - 4k · (i xx j) =

    Text Solution

    |

  21. If vectors bara,barb,barc are non-coplaner, then ([bara+2barb barb+2...

    Text Solution

    |