Home
Class 12
MATHS
Let PQRS be a parallelogram whose diago...

Let PQRS be a parallelogram whose diagonals PR and QS intersect at O'. IF O is the origin then : `bar(OP) + bar(OQ) + bar(OR) + bar(OS) =`

A

4 `bar(OO')`

B

3 `bar(OO')`

C

2 `bar(OO')`

D

`bar(OO')`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the vectors \( \bar{OP} + \bar{OQ} + \bar{OR} + \bar{OS} \) in the context of a parallelogram \( PQRS \) with diagonals \( PR \) and \( QS \) intersecting at point \( O' \), where \( O \) is the origin. ### Step-by-Step Solution: 1. **Understanding the Geometry**: - Let \( O \) be the origin. - Let \( O' \) be the intersection of the diagonals \( PR \) and \( QS \). - In a parallelogram, the diagonals bisect each other, so \( O' \) is the midpoint of both diagonals. 2. **Expressing Vectors**: - We can express the position vectors of points \( P, Q, R, S \) in terms of the origin \( O \) and the midpoint \( O' \). - Since \( O' \) is the midpoint, we have: \[ \bar{O'P} = \bar{O'R} \quad \text{and} \quad \bar{O'Q} = \bar{O'S} \] - This implies: \[ \bar{OP} = \bar{O'P} + \bar{OO'} \quad \text{and} \quad \bar{OR} = \bar{O'R} + \bar{OO'} \] \[ \bar{OQ} = \bar{O'Q} + \bar{OO'} \quad \text{and} \quad \bar{OS} = \bar{O'S} + \bar{OO'} \] 3. **Using the Properties of Vectors**: - Since \( O' \) is the midpoint, we can express: \[ \bar{OP} + \bar{OR} = 2 \bar{OO'} \] \[ \bar{OQ} + \bar{OS} = 2 \bar{OO'} \] 4. **Adding the Vectors**: - Now, we can add the vectors: \[ \bar{OP} + \bar{OQ} + \bar{OR} + \bar{OS} = (\bar{OP} + \bar{OR}) + (\bar{OQ} + \bar{OS}) \] - Substituting the previous results: \[ = 2 \bar{OO'} + 2 \bar{OO'} = 4 \bar{OO'} \] 5. **Final Result**: - Therefore, we conclude that: \[ \bar{OP} + \bar{OQ} + \bar{OR} + \bar{OS} = 4 \bar{OO'} \] ### Final Answer: \[ \bar{OP} + \bar{OQ} + \bar{OR} + \bar{OS} = 4 \bar{OO'} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    MARVEL PUBLICATION|Exercise PREVIOUS YEARS MHT-CET EXAM QUESTIONS|10 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.3|13 Videos

Similar Questions

Explore conceptually related problems

ABCD is a parallelogram whose diagonals meet at P. If O is a fixed point, then bar(OA)+bar(OB)+bar(OC)+bar(OD) equals :

If diagonals of a parallelogram ABCD intersect each other in M, then bar(OA) + bar(OB) + bar(OC) + bar(OD) =

Let PQRS be a parallelogram whose diagonals PR and QS intersect at O. If triangle QRS is an equilateral triangle having a side of length 10 cm, then what is the length of the diagonal PR?

If PQRST is a pentagon, then bar(PQ) + bar(PR) + bar(PS) - bar(TQ) - bar(TR) - bar(TS) =

DeltaABC be an equilateral triangle whose orthocentre is the origin 'O' . If bar (OA)=bar a.bar (OB)=bar b then bar (OC) is

DeltaABC be an equilateral triangle whose orthocentre is the origin 'O' . If bar (OA)=bar a.bar (OB)=bar b then bar (OC) is

Let G be the centroid of a triangle ABC and O be any other point, then bar(OA)+bar(OB)+bar(OC) is equal to

The vector area of a parallelogram with bar(a) and bar(b) as adjacent sides is

Let ABC be a triangle whose circumcentre is at P. If the position vectors of A,B,C and P are bar(a),bar(b),bar(c) and (bar(a)+bar(b)+bar(c))/(4) respectively then the positive vector of the orthocentre of the triangle is

ABCD is a parallelogram.bar(AP) bisects /_A and bar(CQ) bisects /_C.P lies on bar(CD) and Q lies on bar(AB0) .Show that

MARVEL PUBLICATION-VECTORS-TEST YOUR GRASP
  1. Let PQRS be a parallelogram whose diagonals PR and QS intersect at O'...

    Text Solution

    |

  2. If ABCDEF is a regular hexagon , then bar(AB) + bar(AC) + bar(AE) + ...

    Text Solution

    |

  3. If the origin is the centroid of a triangle ABC having vertices A(a ,1...

    Text Solution

    |

  4. If alpha,beta ,gamma are direction angles of a line , then cos 2alpha ...

    Text Solution

    |

  5. If |bar(u)| = sqrt(3) and bar(u) is equally inclined to co - ordinate...

    Text Solution

    |

  6. If vectors 2i-j+k,i+2j-3k and 3i+aj+5k are coplaner, then a=

    Text Solution

    |

  7. If bara.i = 4, then bara.[j xx (2j - 3k)]=

    Text Solution

    |

  8. The vector bar(AB)=3hati+4hatk and bar(AC)=5hati-2hatj+4hatk are the s...

    Text Solution

    |

  9. If veca vecb are non zero and non collinear vectors, then [(veca, vecb...

    Text Solution

    |

  10. If bara,barb,barc are non-coplaner vectors and barp=(barbxxbarc)/([bar...

    Text Solution

    |

  11. If direction ratios of two lines are 2,-6,-3 and 4,3,-1 then directi...

    Text Solution

    |

  12. If the volumes of parallelepiped with coterminus edges -pj+5k,i-j+qk a...

    Text Solution

    |

  13. A line makes 45^(@) with OX, and equal angles with OY and OZ. Then the...

    Text Solution

    |

  14. If the points with position vectors -i + 3j + 2k , -4i + 2j - 2k and 5...

    Text Solution

    |

  15. If bara.barb=barb.barc=barc.bara=0 and bara,barb,barc form a right-han...

    Text Solution

    |

  16. If bara,barb,barc are non-coplaner vectors, then (bara.(barbxxbarc))/...

    Text Solution

    |

  17. i · (j xx k) + j · (k xx i) + k · (i xx j ) =

    Text Solution

    |

  18. If bara=2i+3j-k,barb=-i+2j-4k and barc=i+j+k, then (baraxxbarb).(barax...

    Text Solution

    |

  19. If vectors 2hati-hatj+hatk ,hati+2hatj-3hatk and 3hati+mhatj+5hatk are...

    Text Solution

    |

  20. 2i · (j xx k) - 3j · (i xx k) - 4k · (i xx j) =

    Text Solution

    |

  21. If vectors bara,barb,barc are non-coplaner, then ([bara+2barb barb+2...

    Text Solution

    |