Home
Class 12
MATHS
Points A(4, 5, 1), B (0, - 1, - 1), C (3...

Points A(4, 5, 1), B (0, - 1, - 1), C (3 , 9, 4) and D( -4, 4, 4) are

A

collinear

B

coplanar

C

non -coplanar

D

non-collinear and non-coplanar

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the points A(4, 5, 1), B(0, -1, -1), C(3, 9, 4), and D(-4, 4, 4) are collinear, coplanar, or non-coplanar, we will follow these steps: ### Step 1: Find the position vectors of points A, B, C, and D The position vectors can be represented as: - **A** = \( \vec{A} = (4, 5, 1) \) - **B** = \( \vec{B} = (0, -1, -1) \) - **C** = \( \vec{C} = (3, 9, 4) \) - **D** = \( \vec{D} = (-4, 4, 4) \) ### Step 2: Calculate the vectors AB, AC, and AD To find the vectors, we use the formula \( \vec{AB} = \vec{B} - \vec{A} \), \( \vec{AC} = \vec{C} - \vec{A} \), and \( \vec{AD} = \vec{D} - \vec{A} \). 1. **Vector AB**: \[ \vec{AB} = \vec{B} - \vec{A} = (0 - 4, -1 - 5, -1 - 1) = (-4, -6, -2) \] 2. **Vector AC**: \[ \vec{AC} = \vec{C} - \vec{A} = (3 - 4, 9 - 5, 4 - 1) = (-1, 4, 3) \] 3. **Vector AD**: \[ \vec{AD} = \vec{D} - \vec{A} = (-4 - 4, 4 - 5, 4 - 1) = (-8, -1, 3) \] ### Step 3: Form the matrix for the vectors We will form a matrix using the vectors \( \vec{AB} \), \( \vec{AC} \), and \( \vec{AD} \): \[ \begin{vmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix} \] ### Step 4: Calculate the determinant To check for coplanarity, we need to calculate the determinant of the matrix. If the determinant is zero, the points are coplanar. Expanding the determinant: \[ D = -4 \begin{vmatrix} 4 & 3 \\ -1 & 3 \end{vmatrix} + 6 \begin{vmatrix} -1 & 3 \\ -8 & 3 \end{vmatrix} - 2 \begin{vmatrix} -1 & 4 \\ -8 & -1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 4 & 3 \\ -1 & 3 \end{vmatrix} = (4 \cdot 3) - (3 \cdot -1) = 12 + 3 = 15 \) 2. \( \begin{vmatrix} -1 & 3 \\ -8 & 3 \end{vmatrix} = (-1 \cdot 3) - (3 \cdot -8) = -3 + 24 = 21 \) 3. \( \begin{vmatrix} -1 & 4 \\ -8 & -1 \end{vmatrix} = (-1 \cdot -1) - (4 \cdot -8) = 1 + 32 = 33 \) Now substituting back: \[ D = -4(15) + 6(21) - 2(33) \] \[ D = -60 + 126 - 66 \] \[ D = 0 \] ### Conclusion Since the determinant \( D = 0 \), the points A, B, C, and D are coplanar. ### Final Answer The points A(4, 5, 1), B(0, -1, -1), C(3, 9, 4), and D(-4, 4, 4) are **coplanar**. ---
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    MARVEL PUBLICATION|Exercise PREVIOUS YEARS MHT-CET EXAM QUESTIONS|10 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.3|13 Videos

Similar Questions

Explore conceptually related problems

Find the value of 'x' for which the four points : A(x, -1, -1), B(4, 5, 1), C(3, 9, 4) and D(-4, 4, 4) are coplanar.

If the points A(3, 9, 4), B(0, -1, -1), C(lambda, 4, 4), D(4, 5, 1) are coplanar, then lambda=

Show that the point (0, -1, -1), (4 5, 1), (3, 9, 4) and (-4, 4, 4) are coplanar and find the equation of the common plane.

Prove that the points A(0, 4, 1), B(2, 3, -1), C(4, 5, 0) and D(2, 6, 2) are vertices of a square.

prove that point A(5, -1, 1), B(7, -4, 7), C(1, -6, 10) and D(-1, -3, 4) are vertices of a rhombus

Show that the points A(2,1, -1), B(0, -1, 0), C(4, 0, 4) and D(2,0,1) are coplanar.

Show that the points A(2, -1, 0) B(-3, 0, 4), C(-1, -1, 4) and D(0, -5, 2) are non coplanar.

The points A (- 4, - 1), B (-2, - 4), C (4, 0) and D (2, 3) are the vertices of a

(a) show that the following four points are coplanar : (i) (4,5,1), (0,-1,-1) ,(3,9,4) and (-4,4,4) (ii) (0,-1,0), (2 , 1 , -1) , (1,1,1) and (3,3,0). (b) Show that the four points : (0,-1,-1), (4,5,1), (3,9,4) and (-4,4,4) are coplanar. Also,find the equation of the plane containing them .

MARVEL PUBLICATION-VECTORS-TEST YOUR GRASP
  1. Points A(4, 5, 1), B (0, - 1, - 1), C (3 , 9, 4) and D( -4, 4, 4) are

    Text Solution

    |

  2. If ABCDEF is a regular hexagon , then bar(AB) + bar(AC) + bar(AE) + ...

    Text Solution

    |

  3. If the origin is the centroid of a triangle ABC having vertices A(a ,1...

    Text Solution

    |

  4. If alpha,beta ,gamma are direction angles of a line , then cos 2alpha ...

    Text Solution

    |

  5. If |bar(u)| = sqrt(3) and bar(u) is equally inclined to co - ordinate...

    Text Solution

    |

  6. If vectors 2i-j+k,i+2j-3k and 3i+aj+5k are coplaner, then a=

    Text Solution

    |

  7. If bara.i = 4, then bara.[j xx (2j - 3k)]=

    Text Solution

    |

  8. The vector bar(AB)=3hati+4hatk and bar(AC)=5hati-2hatj+4hatk are the s...

    Text Solution

    |

  9. If veca vecb are non zero and non collinear vectors, then [(veca, vecb...

    Text Solution

    |

  10. If bara,barb,barc are non-coplaner vectors and barp=(barbxxbarc)/([bar...

    Text Solution

    |

  11. If direction ratios of two lines are 2,-6,-3 and 4,3,-1 then directi...

    Text Solution

    |

  12. If the volumes of parallelepiped with coterminus edges -pj+5k,i-j+qk a...

    Text Solution

    |

  13. A line makes 45^(@) with OX, and equal angles with OY and OZ. Then the...

    Text Solution

    |

  14. If the points with position vectors -i + 3j + 2k , -4i + 2j - 2k and 5...

    Text Solution

    |

  15. If bara.barb=barb.barc=barc.bara=0 and bara,barb,barc form a right-han...

    Text Solution

    |

  16. If bara,barb,barc are non-coplaner vectors, then (bara.(barbxxbarc))/...

    Text Solution

    |

  17. i · (j xx k) + j · (k xx i) + k · (i xx j ) =

    Text Solution

    |

  18. If bara=2i+3j-k,barb=-i+2j-4k and barc=i+j+k, then (baraxxbarb).(barax...

    Text Solution

    |

  19. If vectors 2hati-hatj+hatk ,hati+2hatj-3hatk and 3hati+mhatj+5hatk are...

    Text Solution

    |

  20. 2i · (j xx k) - 3j · (i xx k) - 4k · (i xx j) =

    Text Solution

    |

  21. If vectors bara,barb,barc are non-coplaner, then ([bara+2barb barb+2...

    Text Solution

    |