Home
Class 12
MATHS
If the points (- 1, 2, - 3), (4, a, 1) a...

If the points (- 1, 2, - 3), (4, a, 1) and (b, 8, 5) are collinear, then : (a, b)`equiv`

A

(5, 5)

B

(9, 5)

C

(5, 9)

D

(- 5, 9)

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) and \( b \) such that the points (-1, 2, -3), (4, a, 1), and (b, 8, 5) are collinear, we can use the concept of the scalar triple product. The scalar triple product of three vectors is zero if the vectors are coplanar (which is the case for collinear points). ### Step-by-Step Solution: 1. **Define the Points as Vectors**: Let: - Point A = (-1, 2, -3) → Vector \( \mathbf{OA} = -1 \mathbf{i} + 2 \mathbf{j} - 3 \mathbf{k} \) - Point B = (4, a, 1) → Vector \( \mathbf{OB} = 4 \mathbf{i} + a \mathbf{j} + 1 \mathbf{k} \) - Point C = (b, 8, 5) → Vector \( \mathbf{OC} = b \mathbf{i} + 8 \mathbf{j} + 5 \mathbf{k} \) 2. **Set Up the Scalar Triple Product**: The scalar triple product can be represented as: \[ \mathbf{OA} \cdot (\mathbf{OB} \times \mathbf{OC}) = 0 \] This means we need to calculate the determinant of the matrix formed by these vectors. 3. **Construct the Determinant**: The determinant can be set up as follows: \[ \begin{vmatrix} -1 & 2 & -3 \\ 4 & a & 1 \\ b & 8 & 5 \end{vmatrix} = 0 \] 4. **Calculate the Determinant**: Expanding the determinant, we have: \[ -1 \cdot \begin{vmatrix} a & 1 \\ 8 & 5 \end{vmatrix} - 2 \cdot \begin{vmatrix} 4 & 1 \\ b & 5 \end{vmatrix} - 3 \cdot \begin{vmatrix} 4 & a \\ b & 8 \end{vmatrix} \] Calculating each of the 2x2 determinants: - \( \begin{vmatrix} a & 1 \\ 8 & 5 \end{vmatrix} = 5a - 8 \) - \( \begin{vmatrix} 4 & 1 \\ b & 5 \end{vmatrix} = 20 - b \) - \( \begin{vmatrix} 4 & a \\ b & 8 \end{vmatrix} = 32 - ab \) Putting it all together: \[ -1(5a - 8) - 2(20 - b) - 3(32 - ab) = 0 \] Simplifying this gives: \[ -5a + 8 - 40 + 2b - 96 + 3ab = 0 \] Combining like terms: \[ 3ab - 5a + 2b - 128 = 0 \] 5. **Rearranging the Equation**: Rearranging gives us: \[ 3ab - 5a + 2b = 128 \] ### Conclusion: The equation \( 3ab - 5a + 2b = 128 \) relates \( a \) and \( b \). To find specific values, we can try different pairs of integers for \( a \) and \( b \) that satisfy this equation.
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    MARVEL PUBLICATION|Exercise PREVIOUS YEARS MHT-CET EXAM QUESTIONS|10 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.3|13 Videos

Similar Questions

Explore conceptually related problems

If the points A(1, -2, 2), B(3, 1, 1) and C(-1, p, 3) are collinear, then p=

If the points A(4, 5, 2), B(3, 2, p) and C(5, 8, 0) are collinear , then p=

If the points A(1, -2, 3), B(2, 3, -4) and C(0, -p, 10) are collinear, then p=

If the points A(5, -6, -2), B(p, 2, 4) and C(3, -2, 1) are collinear, then p=

If the points A(3, 2, p), B(q, 8, -10), C(-2, -3, 1) are collinear, then

If the points A(3, 2, -4), B(9, 8, -10) and C(-2, -3. p) are collinear, then p=

If the points (-1,2-3),(4,a,1)and(b,8,5) are collinear, then a and b are respectively equal to

If the points A(-1, 3, lambda), B(-2, 0, 1) and C(-4, mu, -3) are collinear, then the values of lambda and mu are

If the points A(-2,-5), B(2,-2) and C(8,a) are collinear , then a =

Show that the points A(-1, 1), B(5, 7) and C(8, 10) are collinear.

MARVEL PUBLICATION-VECTORS-TEST YOUR GRASP
  1. If the points (- 1, 2, - 3), (4, a, 1) and (b, 8, 5) are collinear, th...

    Text Solution

    |

  2. If ABCDEF is a regular hexagon , then bar(AB) + bar(AC) + bar(AE) + ...

    Text Solution

    |

  3. If the origin is the centroid of a triangle ABC having vertices A(a ,1...

    Text Solution

    |

  4. If alpha,beta ,gamma are direction angles of a line , then cos 2alpha ...

    Text Solution

    |

  5. If |bar(u)| = sqrt(3) and bar(u) is equally inclined to co - ordinate...

    Text Solution

    |

  6. If vectors 2i-j+k,i+2j-3k and 3i+aj+5k are coplaner, then a=

    Text Solution

    |

  7. If bara.i = 4, then bara.[j xx (2j - 3k)]=

    Text Solution

    |

  8. The vector bar(AB)=3hati+4hatk and bar(AC)=5hati-2hatj+4hatk are the s...

    Text Solution

    |

  9. If veca vecb are non zero and non collinear vectors, then [(veca, vecb...

    Text Solution

    |

  10. If bara,barb,barc are non-coplaner vectors and barp=(barbxxbarc)/([bar...

    Text Solution

    |

  11. If direction ratios of two lines are 2,-6,-3 and 4,3,-1 then directi...

    Text Solution

    |

  12. If the volumes of parallelepiped with coterminus edges -pj+5k,i-j+qk a...

    Text Solution

    |

  13. A line makes 45^(@) with OX, and equal angles with OY and OZ. Then the...

    Text Solution

    |

  14. If the points with position vectors -i + 3j + 2k , -4i + 2j - 2k and 5...

    Text Solution

    |

  15. If bara.barb=barb.barc=barc.bara=0 and bara,barb,barc form a right-han...

    Text Solution

    |

  16. If bara,barb,barc are non-coplaner vectors, then (bara.(barbxxbarc))/...

    Text Solution

    |

  17. i · (j xx k) + j · (k xx i) + k · (i xx j ) =

    Text Solution

    |

  18. If bara=2i+3j-k,barb=-i+2j-4k and barc=i+j+k, then (baraxxbarb).(barax...

    Text Solution

    |

  19. If vectors 2hati-hatj+hatk ,hati+2hatj-3hatk and 3hati+mhatj+5hatk are...

    Text Solution

    |

  20. 2i · (j xx k) - 3j · (i xx k) - 4k · (i xx j) =

    Text Solution

    |

  21. If vectors bara,barb,barc are non-coplaner, then ([bara+2barb barb+2...

    Text Solution

    |