Home
Class 12
MATHS
If |{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b...

If `|{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b^(3)),(c,,c^(2),,1+c^(3)):}|=0` and the vectors
`overset(to)(A) =(1, a, a^(2)) , overset(to)(B) = (1, b, b^(2)) , overset(to)(C )(1,c,c^(2))`
are non-coplanar then the product abc = ….

A

`-3`

B

`-2`

C

`-1`

D

0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    MARVEL PUBLICATION|Exercise PREVIOUS YEARS MHT-CET EXAM QUESTIONS|10 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.3|13 Videos

Similar Questions

Explore conceptually related problems

If [[a,a^(2),a^(3)-1b,b^(2),b^(3)-1c,c^(2),c^(3)-1]]=0

If |{:( a , a ^(2), 1+ a ^(3)), ( b , b^(2), 1+ b ^(3)), ( c ,c ^(2), 1 + c ^(3)):}|=0 and vectors (1, a,a ^(2)), (1, b, b ^(2)) and (1, c, c^(2)) are non-coplanar, then the value of abc +1 is

If |[a, b, c], [a^(2), b^(2), c^(2)], [a^(3)+1, b^(3)+1, c^(2)+1]|=0 and the vectors given by A(1, a, a^(2)), B(1, b, b^(2)), C(1, c, c^(2)) are non-collinear, then abc=

If a,b, and c are all different and if |{:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3)):}| =0 Prove that abc =-1.

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and the vectors A-=(1, a , a^2), B-=(1, b , b^2), C-=(1, c , c^2) are non-coplanar then the value of abc equal to

If |((a_1 - a)^2,(a_1 - b)^2,(a_1 - c)^2),((b_1 - a)^2,(b_1 - b)^2,(b_1 - c)^2),((c_1 - a)^2,(c_1-b)^2,(c_1-c)^2)|=0 and if the vectors vec alpha = (1, a, a^2), vec beta = (1,b,b^2),vec gamma=(1,c,c^2) are non coplanar, show that the vectors vec alpha_1 =(1,a,a_1^2) ,vec beta_1=(1,b_1,b_1^2),vec gamma_1=(1,c_1,c_1^2) are coplanar.

If |[a,a^(2),1+a^(3)],[b,b^(2),1+b^(3)],[c,c^(2),1+c^(3)]|=0" and "|[a,a^(2),1],[b,b^(2),1],[c,c^(2),1]|!=0 then show that abc =-1

MARVEL PUBLICATION-VECTORS-TEST YOUR GRASP
  1. If |{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b^(3)),(c,,c^(2),,1+c^(3)):}|=0...

    Text Solution

    |

  2. If ABCDEF is a regular hexagon , then bar(AB) + bar(AC) + bar(AE) + ...

    Text Solution

    |

  3. If the origin is the centroid of a triangle ABC having vertices A(a ,1...

    Text Solution

    |

  4. If alpha,beta ,gamma are direction angles of a line , then cos 2alpha ...

    Text Solution

    |

  5. If |bar(u)| = sqrt(3) and bar(u) is equally inclined to co - ordinate...

    Text Solution

    |

  6. If vectors 2i-j+k,i+2j-3k and 3i+aj+5k are coplaner, then a=

    Text Solution

    |

  7. If bara.i = 4, then bara.[j xx (2j - 3k)]=

    Text Solution

    |

  8. The vector bar(AB)=3hati+4hatk and bar(AC)=5hati-2hatj+4hatk are the s...

    Text Solution

    |

  9. If veca vecb are non zero and non collinear vectors, then [(veca, vecb...

    Text Solution

    |

  10. If bara,barb,barc are non-coplaner vectors and barp=(barbxxbarc)/([bar...

    Text Solution

    |

  11. If direction ratios of two lines are 2,-6,-3 and 4,3,-1 then directi...

    Text Solution

    |

  12. If the volumes of parallelepiped with coterminus edges -pj+5k,i-j+qk a...

    Text Solution

    |

  13. A line makes 45^(@) with OX, and equal angles with OY and OZ. Then the...

    Text Solution

    |

  14. If the points with position vectors -i + 3j + 2k , -4i + 2j - 2k and 5...

    Text Solution

    |

  15. If bara.barb=barb.barc=barc.bara=0 and bara,barb,barc form a right-han...

    Text Solution

    |

  16. If bara,barb,barc are non-coplaner vectors, then (bara.(barbxxbarc))/...

    Text Solution

    |

  17. i · (j xx k) + j · (k xx i) + k · (i xx j ) =

    Text Solution

    |

  18. If bara=2i+3j-k,barb=-i+2j-4k and barc=i+j+k, then (baraxxbarb).(barax...

    Text Solution

    |

  19. If vectors 2hati-hatj+hatk ,hati+2hatj-3hatk and 3hati+mhatj+5hatk are...

    Text Solution

    |

  20. 2i · (j xx k) - 3j · (i xx k) - 4k · (i xx j) =

    Text Solution

    |

  21. If vectors bara,barb,barc are non-coplaner, then ([bara+2barb barb+2...

    Text Solution

    |