Home
Class 12
MATHS
If the vectors ai + j + k , i + bj + k a...

If the vectors ai + j + k , i + bj + k and i + j + ck, where a, b, c `ne1`, are coplanar,
then : `1/(1-a)+1/(1-b)+1/(1-c)=…`

A

`-1`

B

0

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the condition for the vectors \( \mathbf{a} = ai + j + k \), \( \mathbf{b} = i + bj + k \), and \( \mathbf{c} = i + j + ck \) to be coplanar. The condition for coplanarity of three vectors is that their scalar triple product is zero. ### Step-by-Step Solution: 1. **Write the Vectors:** The vectors are given as: \[ \mathbf{A} = ai + j + k, \quad \mathbf{B} = i + bj + k, \quad \mathbf{C} = i + j + ck \] 2. **Set Up the Scalar Triple Product:** The scalar triple product can be computed using the determinant of a matrix formed by the coefficients of the vectors: \[ \text{Scalar Triple Product} = \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} \] 3. **Calculate the Determinant:** We can calculate the determinant using the formula for a 3x3 matrix: \[ \text{Determinant} = a \begin{vmatrix} b & 1 \\ 1 & c \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & c \end{vmatrix} + 1 \begin{vmatrix} 1 & b \\ 1 & 1 \end{vmatrix} \] This expands to: \[ = a(bc - 1) - (c - 1) + (1 - b) = abc - a - c + 1 + 1 - b \] Simplifying gives: \[ abc - a - b - c + 2 \] 4. **Set the Determinant Equal to Zero:** For the vectors to be coplanar, we set the determinant equal to zero: \[ abc - a - b - c + 2 = 0 \] 5. **Rearranging the Equation:** Rearranging gives: \[ abc = a + b + c - 2 \] 6. **Substituting Values:** Now we need to find \( \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} \). We can substitute \( a = -2 \), \( b = -2 \), and \( c = -2 \) (as derived from the determinant conditions): \[ \frac{1}{1 - (-2)} + \frac{1}{1 - (-2)} + \frac{1}{1 - (-2)} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1 \] ### Final Result: Thus, we conclude that: \[ \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    MARVEL PUBLICATION|Exercise PREVIOUS YEARS MHT-CET EXAM QUESTIONS|10 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.3|13 Videos

Similar Questions

Explore conceptually related problems

If the vectors pi + j + k, i + qj + k and i + j + rk, where pneqnerne1 are coplanar, then : pqr- (p + q + r) =…..

Vectors i + j + (m + 1) k, i + j + mk and i - j + mk are coplaner for

If the vectors ai +j + k , i-bj+k, i+j-ck are co-planar, then abc + 2 =

If the vectors a hat(i) + hat(j) + hat(k), hat(i) + b hat(j) + hat(k) and hat(i) + hat(j) + c hat(k) (a,b ne 1) are coplanar then the value of (1)/(1-a) + (1)/(1-b) + (1)/(1-c) is equal to

If ahat i+hat j+hat khat i+bhat j+hat khat i+hat j+chat k are coplaner then (1)/(1-a)+(1)/(1-b)+(1)/(1-c)=

If the vectors vecalpha = a hati + hatj + hatk, vecbeta = hati + b hatj + hatk and vec gamma = hati + hatj + c hatk are coplanar, then prove that (1)/(1-a ) +(1)/(1-b)+ (1)/(1-c)=1 where a ne 1, b ne 1 and c ne 1

If the vectors ahat i+hat j+hat k , hat i+bhat j+hat k and hat i+hat j+chat k(a!=b!=c!=1) are coplanar,then the value of (1)/(1-a)+(1)/(1-b)+(1)/(1-c) .

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

MARVEL PUBLICATION-VECTORS-TEST YOUR GRASP
  1. If the vectors ai + j + k , i + bj + k and i + j + ck, where a, b, c n...

    Text Solution

    |

  2. If ABCDEF is a regular hexagon , then bar(AB) + bar(AC) + bar(AE) + ...

    Text Solution

    |

  3. If the origin is the centroid of a triangle ABC having vertices A(a ,1...

    Text Solution

    |

  4. If alpha,beta ,gamma are direction angles of a line , then cos 2alpha ...

    Text Solution

    |

  5. If |bar(u)| = sqrt(3) and bar(u) is equally inclined to co - ordinate...

    Text Solution

    |

  6. If vectors 2i-j+k,i+2j-3k and 3i+aj+5k are coplaner, then a=

    Text Solution

    |

  7. If bara.i = 4, then bara.[j xx (2j - 3k)]=

    Text Solution

    |

  8. The vector bar(AB)=3hati+4hatk and bar(AC)=5hati-2hatj+4hatk are the s...

    Text Solution

    |

  9. If veca vecb are non zero and non collinear vectors, then [(veca, vecb...

    Text Solution

    |

  10. If bara,barb,barc are non-coplaner vectors and barp=(barbxxbarc)/([bar...

    Text Solution

    |

  11. If direction ratios of two lines are 2,-6,-3 and 4,3,-1 then directi...

    Text Solution

    |

  12. If the volumes of parallelepiped with coterminus edges -pj+5k,i-j+qk a...

    Text Solution

    |

  13. A line makes 45^(@) with OX, and equal angles with OY and OZ. Then the...

    Text Solution

    |

  14. If the points with position vectors -i + 3j + 2k , -4i + 2j - 2k and 5...

    Text Solution

    |

  15. If bara.barb=barb.barc=barc.bara=0 and bara,barb,barc form a right-han...

    Text Solution

    |

  16. If bara,barb,barc are non-coplaner vectors, then (bara.(barbxxbarc))/...

    Text Solution

    |

  17. i · (j xx k) + j · (k xx i) + k · (i xx j ) =

    Text Solution

    |

  18. If bara=2i+3j-k,barb=-i+2j-4k and barc=i+j+k, then (baraxxbarb).(barax...

    Text Solution

    |

  19. If vectors 2hati-hatj+hatk ,hati+2hatj-3hatk and 3hati+mhatj+5hatk are...

    Text Solution

    |

  20. 2i · (j xx k) - 3j · (i xx k) - 4k · (i xx j) =

    Text Solution

    |

  21. If vectors bara,barb,barc are non-coplaner, then ([bara+2barb barb+2...

    Text Solution

    |