Home
Class 12
MATHS
If the line y=mx + sqrt(a^2 m^2 - b^2) t...

If the line `y=mx + sqrt(a^2 m^2 - b^2)` touches the hyperbola `x^2/a^2 - y^2/b^2 = 1` at the point `(a sec phi, b tan phi)`, show that `phi = sin^(-1) (b/am)`.

Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Subjective Type Questions|1 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise For Session 1|19 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If the line y = mx + sqrt(a^(2)m^(2) - b^(2)) touches the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 at the point (a sec theta, b tan theta) , then find theta .

If the line y = mx + sqrt(a^(2) m^(2) -b^(2)), m = (1)/(2) touches the hyperbola (x^(2))/(16)-(y^(2))/(3) =1 at the point (4 sec theta, sqrt(3) tan theta) then theta is

(sec phi-tan phi)^2 (1+sin phi)^2 div sin^2 phi =?

If the chord through the points (a sec theta, b tan theta) and (a sec phi, b tan phi) on the hyperbola x^2/a^@ - y^2/b^2 = 1 passes through a focus, prove that tan theta/2 tan phi/2 + (e-1)/(e+1) = 0 .

Show that the equation of the normal to the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at the point (a sqrt(2),b) is ax+b sqrt(2)y=(a^(2)+b^(2))sqrt(2)

Let P(a sec theta,b tan theta) and Q(a sec c phi,b tan phi) (where theta+phi=(pi)/(2) be two points on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 If (h,k) is the point of intersection of the normals at P and Q then k is equal to (A) (a^(2)+b^(2))/(a)(B)-((a^(2)+b^(2))/(a))( C) (a^(2)+b^(2))/(b)(D)-((a^(2)+b^(2))/(b))

ARIHANT MATHS-HYPERBOLA-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If the line y=mx + sqrt(a^2 m^2 - b^2) touches the hyperbola x^2/a^2 -...

    Text Solution

    |

  2. The locus a point P(alpha,beta) moving under the condition that the li...

    Text Solution

    |

  3. Let a hyperbola passes through the focus of the ellipse (x^(2))/(25)+(...

    Text Solution

    |

  4. A hyperbola, having the transverse axis of length 2sin theta, is conf...

    Text Solution

    |

  5. Two braches of a hyperbola

    Text Solution

    |

  6. For the hyperbola (x^2)/(cos^2alpha)-(y^2)/(sin^2alpha)=1 , which of ...

    Text Solution

    |

  7. Consider a branch of the hypebola x^2-2y^2-2sqrt2x-4sqrt2y-6=0 with ve...

    Text Solution

    |

  8. An ellipse intersects the hyperbola 2x^(2)-2y^(2)=1 orthogonally. The ...

    Text Solution

    |

  9. The circle x^(2)+y^(2)-8x=0 and hyperbola (x^(2))/(9)-(y^(2))/(4)=1 in...

    Text Solution

    |

  10. The circle x^2+y^2-8x=0 and hyperbola x^2/9-y^2/4=1 intersect at the...

    Text Solution

    |

  11. The line 2x + y = 1 is tangent to the hyperbola x^2/a^2-y^2/b^2=1. I...

    Text Solution

    |

  12. Let P(6,3) be a point on the hyperbola parabola x^2/a^2-y^2/b^2=1If t...

    Text Solution

    |

  13. let the eccentricity of the hyperbola x^2/a^2-y^2/b^2=1 be reciprocal ...

    Text Solution

    |

  14. Tangents are drawn to the hyperbola x^2/9-y^2/4=1 parallet to the srai...

    Text Solution

    |

  15. Consider the hyperbola H:x^2-y^2=1 and a circle S with centre N(x2,0) ...

    Text Solution

    |

  16. The eccentricity of the hyperbola whose latuscrectum is 8 and conjugat...

    Text Solution

    |

  17. A hyperbola passes through the point P(sqrt(2),sqrt(3)) and has foci a...

    Text Solution

    |

  18. If 2x-y+1=0 is a tangent to the hyperbola (x^2)/(a^2)-(y^2)/(16)=1 the...

    Text Solution

    |