Home
Class 12
MATHS
Let any double ordinate PNP^1 of the hyp...

Let any double ordinate `PNP^1` of the hyperbol `x^2/9-y^2/4=1` be produced both sides to meet the asymptotes in Q and Q', then `PQ.P'Q` is equal to

A

`9`

B

`16`

C

`25`

D

`41`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS|Exercise JEE Type Solved Examples : Subjective Type Questions|1 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise For Session 1|19 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Let any double ordinate PNP 'of the hyperbola (x^(2))/(25)-(y^(2))/(16)=1 be produced on both sides to meet the asymptotes in Q and Q' . Then PQ.P'Q is equal to 25 (b) 16 (c) 41 (d) none of these

The ordinate of any point P on the hyperbola, given by 25x^(2)-16y^(2)=400 ,is produced to cut its asymptotes in the points Q and R. Prove that QP.PR=25.

A straight line intersects the same branch of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 in P_(1) and P_(2) and meets its asymptotes in Q_(1) and Q_(2) . Then, P_(1)Q_(2)-P_(2)Q_(1) is equal to

A transvers axis cuts the same branch of a hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at P and P' and the asymptotes at Q and Q'. Prove that PQ=P'Q' and PQ'=P'Q.

PQ is a double ordinate of the ellipse x^(2)+9y^(2)=9, the normal at P meets the diameter through Q at R .then the locus of the mid point of PR is

ARIHANT MATHS-HYPERBOLA-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let any double ordinate PNP^1 of the hyperbol x^2/9-y^2/4=1 be produc...

    Text Solution

    |

  2. The locus a point P(alpha,beta) moving under the condition that the li...

    Text Solution

    |

  3. Let a hyperbola passes through the focus of the ellipse (x^(2))/(25)+(...

    Text Solution

    |

  4. A hyperbola, having the transverse axis of length 2sin theta, is conf...

    Text Solution

    |

  5. Two braches of a hyperbola

    Text Solution

    |

  6. For the hyperbola (x^2)/(cos^2alpha)-(y^2)/(sin^2alpha)=1 , which of ...

    Text Solution

    |

  7. Consider a branch of the hypebola x^2-2y^2-2sqrt2x-4sqrt2y-6=0 with ve...

    Text Solution

    |

  8. An ellipse intersects the hyperbola 2x^(2)-2y^(2)=1 orthogonally. The ...

    Text Solution

    |

  9. The circle x^(2)+y^(2)-8x=0 and hyperbola (x^(2))/(9)-(y^(2))/(4)=1 in...

    Text Solution

    |

  10. The circle x^2+y^2-8x=0 and hyperbola x^2/9-y^2/4=1 intersect at the...

    Text Solution

    |

  11. The line 2x + y = 1 is tangent to the hyperbola x^2/a^2-y^2/b^2=1. I...

    Text Solution

    |

  12. Let P(6,3) be a point on the hyperbola parabola x^2/a^2-y^2/b^2=1If t...

    Text Solution

    |

  13. let the eccentricity of the hyperbola x^2/a^2-y^2/b^2=1 be reciprocal ...

    Text Solution

    |

  14. Tangents are drawn to the hyperbola x^2/9-y^2/4=1 parallet to the srai...

    Text Solution

    |

  15. Consider the hyperbola H:x^2-y^2=1 and a circle S with centre N(x2,0) ...

    Text Solution

    |

  16. The eccentricity of the hyperbola whose latuscrectum is 8 and conjugat...

    Text Solution

    |

  17. A hyperbola passes through the point P(sqrt(2),sqrt(3)) and has foci a...

    Text Solution

    |

  18. If 2x-y+1=0 is a tangent to the hyperbola (x^2)/(a^2)-(y^2)/(16)=1 the...

    Text Solution

    |