Home
Class 12
MATHS
If the sum of slopes of concurrent norma...

If the sum of slopes of concurrent normals to the curve xy = 4 is equal to the sum of ordinates of conormal points then locus of P is

A

`x^(2)=2y`

B

`x^(2)=4y`

C

`x^(2)=6y`

D

`x^(2)=8y`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|8 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

A point P moves such that sum of the slopes of the normals drawn from it to the hyperbola xy=16 is equal to the sum of ordinates of feet of normals.The locus of P is a curve C

A point P moves such that the sum of the slopes of the normals drawn from it to the hyperbola xy=4 is equal to the sum of the ordinates of feet of normals. The locus of P is a curve C. Q.If the tangent to the curve C cuts the coordinate axes at A and B, then , the locus of the middle point of AB is

A point P moves such that the sum of the slopes of the normals drawn from it to the hyperbola xy=4 is equal to the sum of the ordinates of feet of normals. The locus of P is a curve C. Q. The area of the equilateral triangle inscribed in the curve C having one vertex as the vertex of curve C is

Find the equation of a curve passing through the point (0,1) .If the slope of the tangent to the curve at any point (x,y) is equal to the sum of the x coordinate (abscissa) and the product of the x coordinate and y coordinate (ordinate) of that point.

Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x,y) is equal to the sum of the coordinates of the point.