Home
Class 12
MATHS
Solve the following integration int c...

Solve the following integration
`int cos x^(@)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos(x^\circ) \, dx \), we need to convert the angle from degrees to radians, as integration is typically performed in radians. Here's the step-by-step solution: ### Step 1: Convert Degrees to Radians To convert degrees to radians, we use the conversion factor: \[ \text{radians} = \text{degrees} \times \frac{\pi}{180} \] Thus, we convert \( x^\circ \) to radians: \[ x^\circ = x \times \frac{\pi}{180} \] ### Step 2: Rewrite the Integral Now we can rewrite the integral in terms of radians: \[ \int \cos(x^\circ) \, dx = \int \cos\left(x \times \frac{\pi}{180}\right) \, dx \] ### Step 3: Use Substitution Let \( u = x \times \frac{\pi}{180} \). Then, the differential \( du \) is: \[ du = \frac{\pi}{180} \, dx \quad \Rightarrow \quad dx = \frac{180}{\pi} \, du \] Now, substitute \( u \) and \( dx \) into the integral: \[ \int \cos\left(u\right) \cdot \frac{180}{\pi} \, du = \frac{180}{\pi} \int \cos(u) \, du \] ### Step 4: Integrate The integral of \( \cos(u) \) is \( \sin(u) \): \[ \frac{180}{\pi} \int \cos(u) \, du = \frac{180}{\pi} \sin(u) + C \] ### Step 5: Substitute Back Now substitute back \( u = x \times \frac{\pi}{180} \): \[ \frac{180}{\pi} \sin\left(x \times \frac{\pi}{180}\right) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \cos(x^\circ) \, dx = \frac{180}{\pi} \sin\left(x \times \frac{\pi}{180}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 3|24 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integration int cos^(3)x dx

Solve the following integration int (cos x - sin x)/(cos x + sin x)*(2+2 sin 2x)dx

Solve the following integration int (sin x+cos x)/(sqrt(1+sin 2x))*dx , here (sin x + cos x) gt 0

Solve the following integration int (dx)/(1+sin x)

Solve the following integration int sqrt(1-sin 2x)dx

Evaluate the following integration int 2^(x)*e^(x)*dx

Evaluate the following integration int (sin 4x)/(sin x)dx

Solve the following integration int(sin 2x+sin 5x-sin 3x)/(cos x+1-2 sin^(2)2x)dx

Evaluate the following integration int sin^(3) x cos^(3) x dx

Evaluate the following integrals: int (1-cos x)/(sin x) dx