Home
Class 12
MATHS
Prove that : int (1)/(x[6(logx)^(2)+7log...

Prove that : `int (1)/(x[6(logx)^(2)+7logx+2]] dx= log |(1+log x^(2))/(2+log x^(3))|+c`

Text Solution

Verified by Experts

The correct Answer is:
`log |(2log x +1)/(3 log x + 2)|+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 4|25 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evlauate : int (1)/(x[6(logx)^(2)+7logx+2]] dx= log |(1+log x^(2))/(2+log x^(3))|+c

int(1)/(x(6(log x)^(2)+7log x+2)dx)

int(1)/((x)(6(log x)^(2)+7log x+2))dx

Evaluate: int(1)/(x{6(log x)^(2)+7log x+2})dx

Evaluate int (dx)/(x{6(logx)^(2)+7logx+2}).

int (2 log x)/(x[2(logx)^(2)-logx-3])dx

int(2log x)/(x[2(log x)^(2)-logx-3])dx

(1)/(logx)-(1)/((log x)^(2))

int[(1)/(log x)-(1)/((log x)^(2))]dx=

int (log x)/(1+logx)^2 dx