Home
Class 12
MATHS
Let f(x) be a polynomial satisfying f(0)...

Let `f(x)` be a polynomial satisfying f(0)=2 , `f'(0)=3` and `f''(x)=f(x)` then f(4) equals

A

`(5(e^(8)+1))/(2e^(4))`

B

`(5(e^(8)-1))/(2e^(4))`

C

`(2e^(4))/(5(e^(8)-1))`

D

`(2e^(4))/(5(e^(8)+1))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 6|10 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a polynomial satisfying f(0)=2f'(0)=3 and f'(x)=f(x) then f(4) equals

Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f''(0)=6 , then int_(-1)^(2) f(x) is equal to

Let f be a function satisfying f''(x)=x^(-(3)/(2)) , f'(4)=2 and f(0)=0 . Then f(784) equals……..

If f(x) is a polynomial satisfying f(x)f((1)/(x))=f(x)+f((1)/(x)) and f(3)=28 then f(4)=

If f(x) is a polynomial satisfying f(x)f((1)/(x))=f(x)+f((1)/(x)) and f(3)=28, then f(4) is equal to 63 (b) 65 (c) 17 (d) none of these

let f(x) be a polynomial satisfying f(x) : f(1/x) = f(x) + f(1/x) for all XinR :- {O} and f(5) =126, then find f(3).

Let f(x) be a function satisfying f'(x) = f(x) and f(0) = 2. Then int(f(x))/(3+4f(x))dx is equal to

If f (x) is a polynomial of degree two and f(0) =4 f'(0) =3,f'' (0) 4 then f(-1) =

ARIHANT MATHS-INDEFINITE INTEGRAL -Exercise (Single Option Correct Type Questions)
  1. Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

    Text Solution

    |

  2. If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

    Text Solution

    |

  3. If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

    Text Solution

    |

  4. If n is a positive odd integer, then int |x^n| dx=

    Text Solution

    |

  5. Let F(x) be the primitive of (3x+2)/sqrt(x-9)w.r.t.x. If F(10)=60 then...

    Text Solution

    |

  6. int(x^x)^x(2xlogex+x)dx is equal to

    Text Solution

    |

  7. The value of int x log x (log x - 1) dx is equal to

    Text Solution

    |

  8. int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

    Text Solution

    |

  9. Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) t...

    Text Solution

    |

  10. int(e^((x^2+4lnx))-x^3e^(x^2))/(x-1) dx is equal to

    Text Solution

    |

  11. int tan^(4)x dx = A tan^(3) x+ B tan x + f(x), then

    Text Solution

    |

  12. If the anti derivative of int sin^4x/x dx is f(x) then int(sin^4(p+q)...

    Text Solution

    |

  13. Prove that : sintheta/cos[3theta]+sin[3theta]/cos[9theta]+sin[9theta...

    Text Solution

    |

  14. If x^2!=n pi-1, n in N. Then, the value of int x sqrt((2sin(x^2+1)-sin...

    Text Solution

    |

  15. int(dx)/(cos(2x)cos(4x))=

    Text Solution

    |

  16. int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C, then f(x)...

    Text Solution

    |

  17. Evaluate: (sin^3x dx)/((cos^4x+3cos^2x+1)tan^(-1)(secx+cosx)

    Text Solution

    |

  18. The primitive of the function f(x)= x | cos x|, when pi/2 lt x lt pi i...

    Text Solution

    |

  19. The primitive of the function f(x)=(2x+1)|sin x|, when pi lt x lt 2 p...

    Text Solution

    |

  20. If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|,then i...

    Text Solution

    |