Home
Class 12
MATHS
int tan^(4)x dx = A tan^(3) x+ B tan x +...

`int tan^(4)x dx = A tan^(3) x+ B tan x + f(x)`, then

A

`A=1/3, B=-1, f(x)=x+C`

B

`A=2/3, B=-1, f(x)= x+C`

C

`A=1/3, B=1, f(x)=x+C`

D

`A=2/3, B=1, f(x)=-x+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^4 x \, dx \), we can use the identity \( \tan^2 x = \sec^2 x - 1 \). Let's proceed step by step. ### Step 1: Rewrite the Integral We start by rewriting \( \tan^4 x \): \[ \tan^4 x = \tan^2 x \cdot \tan^2 x = (\sec^2 x - 1)^2 \] Thus, we can express the integral as: \[ \int \tan^4 x \, dx = \int (\sec^2 x - 1)^2 \, dx \] ### Step 2: Expand the Expression Next, we expand \( (\sec^2 x - 1)^2 \): \[ (\sec^2 x - 1)^2 = \sec^4 x - 2\sec^2 x + 1 \] So, we can rewrite the integral: \[ \int \tan^4 x \, dx = \int (\sec^4 x - 2\sec^2 x + 1) \, dx \] ### Step 3: Split the Integral Now, we can split the integral into three separate integrals: \[ \int \tan^4 x \, dx = \int \sec^4 x \, dx - 2\int \sec^2 x \, dx + \int 1 \, dx \] ### Step 4: Solve Each Integral 1. **Integral of \( \sec^4 x \)**: \[ \int \sec^4 x \, dx = \frac{1}{3} \tan^3 x + C_1 \] (This can be derived using integration by parts or known results.) 2. **Integral of \( \sec^2 x \)**: \[ \int \sec^2 x \, dx = \tan x + C_2 \] 3. **Integral of \( 1 \)**: \[ \int 1 \, dx = x + C_3 \] ### Step 5: Combine the Results Now, substituting back into our equation: \[ \int \tan^4 x \, dx = \left( \frac{1}{3} \tan^3 x \right) - 2(\tan x) + x + C \] where \( C = C_1 - 2C_2 + C_3 \) is a constant of integration. ### Step 6: Final Expression Thus, we can express the integral as: \[ \int \tan^4 x \, dx = \frac{1}{3} \tan^3 x - 2 \tan x + x + C \] ### Step 7: Comparing with the Given Form The problem states that: \[ \int \tan^4 x \, dx = A \tan^3 x + B \tan x + f(x) \] From our result: - \( A = \frac{1}{3} \) - \( B = -2 \) - \( f(x) = x + C \) ### Conclusion Thus, the values are: - \( A = \frac{1}{3} \) - \( B = -2 \) - \( f(x) = x + C \)
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise For Session 6|10 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If int tan^(7) x dx = f(x) + C then

int(tan^(3)x-x tan^(2)x)dx

If int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, then:

int tan x tan2x tan3xdx

int tan2x tan3x tan5xdx

int tan2x tan3x tan5xdx

If f(x) = tanx-tan ^(3) x + tan^(5) x - tan ^(7) x + ... infty for olt x lt pi/4 , "than" int_(0)^(pi//4) f (x) dx=

(i) int tan^3 x dx (ii) int tan^4 x dx.

int x^(3)(tan^(-1)x)dx

ARIHANT MATHS-INDEFINITE INTEGRAL -Exercise (Single Option Correct Type Questions)
  1. Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

    Text Solution

    |

  2. If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

    Text Solution

    |

  3. If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

    Text Solution

    |

  4. If n is a positive odd integer, then int |x^n| dx=

    Text Solution

    |

  5. Let F(x) be the primitive of (3x+2)/sqrt(x-9)w.r.t.x. If F(10)=60 then...

    Text Solution

    |

  6. int(x^x)^x(2xlogex+x)dx is equal to

    Text Solution

    |

  7. The value of int x log x (log x - 1) dx is equal to

    Text Solution

    |

  8. int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

    Text Solution

    |

  9. Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) t...

    Text Solution

    |

  10. int(e^((x^2+4lnx))-x^3e^(x^2))/(x-1) dx is equal to

    Text Solution

    |

  11. int tan^(4)x dx = A tan^(3) x+ B tan x + f(x), then

    Text Solution

    |

  12. If the anti derivative of int sin^4x/x dx is f(x) then int(sin^4(p+q)...

    Text Solution

    |

  13. Prove that : sintheta/cos[3theta]+sin[3theta]/cos[9theta]+sin[9theta...

    Text Solution

    |

  14. If x^2!=n pi-1, n in N. Then, the value of int x sqrt((2sin(x^2+1)-sin...

    Text Solution

    |

  15. int(dx)/(cos(2x)cos(4x))=

    Text Solution

    |

  16. int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C, then f(x)...

    Text Solution

    |

  17. Evaluate: (sin^3x dx)/((cos^4x+3cos^2x+1)tan^(-1)(secx+cosx)

    Text Solution

    |

  18. The primitive of the function f(x)= x | cos x|, when pi/2 lt x lt pi i...

    Text Solution

    |

  19. The primitive of the function f(x)=(2x+1)|sin x|, when pi lt x lt 2 p...

    Text Solution

    |

  20. If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|,then i...

    Text Solution

    |