Home
Class 12
MATHS
If int(1)/((x^(2)-1))ln((x-1)/(x+1))dx=6...

If `int(1)/((x^(2)-1))ln((x-1)/(x+1))dx=6A[ln ((x-1)/(x+1))]^(2)+C`, then find 24 A.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|11 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =

int(1)/(x(log x)^(2))dx

int(1)/(x)log((1)/(x))dx=

int_((1)/(2))^(2)(ln x)/(1+x^(2))dx

int[(1)/(log x)-(1)/((log x)^(2))]dx=

int(1)/(x(1+log x))dx

If int(ln((x-1)/(x+1)))/(x^(2)-1)dx=(1)/(a)*(ln|(x-1)/(x+1)|)^(b)+c , then a^(2)-b^(2)-ab is equal to __________.

int_(1)^(e^(2))(dx)/(x(1+log x)^(2))=

I=int_(-1)^(1)log((2-x)/(2+x))dx

" "int(1)/(log(x^(x))(log x+1))dx=