Home
Class 12
MATHS
Suppose A=int (dx)/(x^(2)+6x+25) and B=i...

Suppose `A=int (dx)/(x^(2)+6x+25)` and `B=int(dx)/(x^(2)-6x-27)`.
If `12(A+B)=lambda*tan^(-1)((x+3)/(4))+mu* ln |(x-9)/(x+3)|+C`, then the value of `(lambda+mu)` is ... .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( A \) and \( B \) and then find the values of \( \lambda \) and \( \mu \) from the expression \( 12(A+B) \). ### Step 1: Evaluate \( A = \int \frac{dx}{x^2 + 6x + 25} \) 1. **Complete the square** for the quadratic in the denominator: \[ x^2 + 6x + 25 = (x^2 + 6x + 9) + 16 = (x + 3)^2 + 4^2 \] Thus, we rewrite \( A \): \[ A = \int \frac{dx}{(x + 3)^2 + 4^2} \] 2. **Use the formula** for the integral of the form \( \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \): Here, \( a = 4 \) and \( x \) is replaced by \( x + 3 \): \[ A = \frac{1}{4} \tan^{-1} \left( \frac{x + 3}{4} \right) + C \] ### Step 2: Evaluate \( B = \int \frac{dx}{x^2 - 6x - 27} \) 1. **Complete the square** for the quadratic in the denominator: \[ x^2 - 6x - 27 = (x^2 - 6x + 9) - 36 = (x - 3)^2 - 36 \] Thus, we rewrite \( B \): \[ B = \int \frac{dx}{(x - 3)^2 - 6^2} \] 2. **Use the formula** for the integral of the form \( \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C \): Here, \( a = 6 \) and \( x \) is replaced by \( x - 3 \): \[ B = \frac{1}{12} \ln \left| \frac{(x - 3) - 6}{(x - 3) + 6} \right| + C = \frac{1}{12} \ln \left| \frac{x - 9}{x + 3} \right| + C \] ### Step 3: Combine \( A \) and \( B \) Now we have: \[ A = \frac{1}{4} \tan^{-1} \left( \frac{x + 3}{4} \right) + C_1 \] \[ B = \frac{1}{12} \ln \left| \frac{x - 9}{x + 3} \right| + C_2 \] Thus, \[ A + B = \frac{1}{4} \tan^{-1} \left( \frac{x + 3}{4} \right) + \frac{1}{12} \ln \left| \frac{x - 9}{x + 3} \right| + C \] ### Step 4: Calculate \( 12(A + B) \) \[ 12(A + B) = 12 \left( \frac{1}{4} \tan^{-1} \left( \frac{x + 3}{4} \right) + \frac{1}{12} \ln \left| \frac{x - 9}{x + 3} \right| \right) \] \[ = 3 \tan^{-1} \left( \frac{x + 3}{4} \right) + \ln \left| \frac{x - 9}{x + 3} \right| + C \] ### Step 5: Compare with the given expression The given expression is: \[ 12(A + B) = \lambda \tan^{-1} \left( \frac{x + 3}{4} \right) + \mu \ln \left| \frac{x - 9}{x + 3} \right| + C \] From this, we can identify: - \( \lambda = 3 \) - \( \mu = 1 \) ### Step 6: Find \( \lambda + \mu \) \[ \lambda + \mu = 3 + 1 = 4 \] ### Final Answer The value of \( \lambda + \mu \) is \( 4 \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|11 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(x^(2))/(x^(2)+6x-12)dx

int(x^(2))/(x^(2)+6x+12)dx

int(x^(2))/((x^(2)+6x-3))dx

If tan((x)/(2))=(lambda)/(mu), then the value of lambda sin x+mu cos x is

int(x-1)/((x-3)(x-2))dx=A ln(x-3)+B ln(x-2)+c , then find the value of A+B

If x(sgn x)(sgn x)+|x|(sgnx)^(3)=lambda x^(mu), then the value of lambda+mu is:

The value of int(dx)/((x^(2)-6x+9)sqrt(x^(2)-6x+4)) is

int(ln x)/(x^(3))dx=A(ln x)/(x^(2))+(B)/(x^(2))+c

int(ln(6x^(2)))/(x)dx