Home
Class 12
MATHS
Evaluate int(dx)/((1-x^(3))^(1//3))dx....

Evaluate `int(dx)/((1-x^(3))^(1//3))dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{dx}{(1 - x^3)^{1/3}}, \] we will use substitution and integration techniques. ### Step 1: Substitution Let us substitute \( x = \frac{1}{t} \). Then, we have: \[ dx = -\frac{1}{t^2} dt. \] ### Step 2: Change of Variables Substituting \( x = \frac{1}{t} \) into the integral, we get: \[ I = \int \frac{-\frac{1}{t^2} dt}{\left(1 - \left(\frac{1}{t}\right)^3\right)^{1/3}} = -\int \frac{dt}{t^2 \left(1 - \frac{1}{t^3}\right)^{1/3}}. \] ### Step 3: Simplifying the Denominator The denominator simplifies as follows: \[ 1 - \frac{1}{t^3} = \frac{t^3 - 1}{t^3}. \] Thus, we have: \[ \left(1 - \frac{1}{t^3}\right)^{1/3} = \left(\frac{t^3 - 1}{t^3}\right)^{1/3} = \frac{(t^3 - 1)^{1/3}}{t}. \] ### Step 4: Substitute Back into the Integral Now substituting this back into the integral, we get: \[ I = -\int \frac{t \, dt}{t^2 (t^3 - 1)^{1/3}} = -\int \frac{dt}{t (t^3 - 1)^{1/3}}. \] ### Step 5: Further Substitution Let \( u = t^3 - 1 \). Then, \( du = 3t^2 dt \) or \( dt = \frac{du}{3t^2} \). Since \( t^2 = (u + 1)^{2/3} \), we can write: \[ dt = \frac{du}{3(u + 1)^{2/3}}. \] ### Step 6: Substitute \( t \) in Terms of \( u \) The integral becomes: \[ I = -\int \frac{1}{(u + 1)^{1/3}} \cdot \frac{du}{3(u + 1)^{2/3}} = -\frac{1}{3} \int \frac{du}{(u + 1)}. \] ### Step 7: Integrate The integral simplifies to: \[ I = -\frac{1}{3} \ln |u + 1| + C. \] ### Step 8: Substitute Back for \( u \) Substituting back for \( u \): \[ I = -\frac{1}{3} \ln |t^3| + C = -\frac{1}{3} \ln |(1 - x^3)^{1/3}| + C. \] ### Final Result Thus, the final result is: \[ I = -\frac{1}{3} \ln |1 - x^3| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|12 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate I=int(dx)/((2x-3)^(1//3)) .

Evaluate: int(x)/(x^(3)-1)dx

Evaluate int(1)/(1+x^(3))dx

Evaluate: int(x^(8))/((1-x^(3))^((1)/(3)))dx

Evaluate: int(x^(3))/((x^(2)+1)^(3))dx

Evaluate: int(1)/(x^(1/2)+x^(1/3))dx

Evaluate : int(dx)/(x^(2)(x^(3)+1)^(2/3))

Evaluate int_(1)^(3)x^(3)dx

Evaluate: int(x^(2))/((x-1)^(3)(x+1))dx