Home
Class 12
MATHS
If y^(2)=ax^(2)+2bx+c, and u(n)= int (x^...

If `y^(2)=ax^(2)+2bx+c`, and `u_(n)= int (x^(n))/(y)dx`, prove that `(n+1)a u_(n+1)+(2n+1)bu_(n)+(n)c u_(n-1)=x^(n)y` and deduce that `au_(1)=y-b u_(0), 2a^(2)u_(2)=y(ax-3b)-(ac-3b^(2))u_(0)`.

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|12 Videos
  • HYPERBOLA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If u_(n)=int(log x)^(n)dx, then u_(n)+nu_(n-1) is equal to :

If v_n=int_0^1x^n tan^-1xdx , show that: (n+1)u_n+(n-1)u_(n-2)=pi/2-1/n

If U_(n)=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n), then prove that U_(n+1)=8U_(n)-4U_(n-1)

If u_(n)=sin^(n)theta+cos^(n)theta, then prove that (u_(5)-u_(7))/(u_(3)-u_(5))=(u_(3))/(u_(1))

If u_(n)=int_(0)^((pi)/(2))theta sin^(n)theta d theta and n>=1, then prove that u_(n)=((n-1)/(n))u_(n-2)+(1)/(n^(2))

If u = log ((x ^ (2) + y ^ (2)) / (x + y)), prove that x (u) / (x) + y (u) / (y) = 1

If y=x^(2)e^(x) ,show that y_(n)=(1)/(2)n(n-1)y_(2)-n(n-2)y_(1)+(1)/(2)(n-1)(n-2)}

If u_n = 2cos n theta then u_1u_n - u_(n-1) is equal to

If u_(n) = sin ^(n) theta + cos ^(n) theta, then 2 u_(6) -3 u_(4) is equal to