Home
Class 12
MATHS
For non-negative inger n, let f(n)=sum...

For non-negative inger n, let
`f(n)=sum_(k=)^(n) sin((k+1)/(n+1)pisin((k+2)/(n+1)pi))/(sum_(k=0)^(n)sin^(2)((k+1)/(n+1)pi))`
Assuming `cos^(-1)x` takes values in `[0,pi]` which of the following options is/are correct?

A

if `alpha=tan(cos^(-1)f(6))`, then `alpha^(2)+2alpha-1=0`

B

`underset(ntoinfty)(lim)f(x)=(1)/(2)`

C

`f(4)=(sqrt(3))/(2)`

D

`sin(7cos^(-1)f(5))=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(n) \) defined as: \[ f(n) = \frac{\sum_{k=0}^{n} \sin\left(\frac{k+1}{n+2}\pi\right) \sin\left(\frac{k+2}{n+2}\pi\right)}{\sum_{k=0}^{n} \sin^2\left(\frac{k+1}{n+2}\pi\right)} \] ### Step 1: Simplifying the Numerator The numerator can be simplified using the product-to-sum identities: \[ \sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)] \] Let \( A = \frac{k+1}{n+2}\pi \) and \( B = \frac{k+2}{n+2}\pi \). Then, \[ \sin\left(\frac{k+1}{n+2}\pi\right) \sin\left(\frac{k+2}{n+2}\pi\right) = \frac{1}{2} \left[\cos\left(\frac{(k+1) - (k+2)}{n+2}\pi\right) - \cos\left(\frac{(k+1) + (k+2)}{n+2}\pi\right)\right] \] This simplifies to: \[ \sin\left(\frac{k+1}{n+2}\pi\right) \sin\left(\frac{k+2}{n+2}\pi\right) = \frac{1}{2} \left[\cos\left(-\frac{\pi}{n+2}\right) - \cos\left(\frac{2k + 3}{n+2}\pi\right)\right] \] ### Step 2: Evaluating the Summation in the Numerator Now we can write the numerator as: \[ \sum_{k=0}^{n} \sin\left(\frac{k+1}{n+2}\pi\right) \sin\left(\frac{k+2}{n+2}\pi\right) = \frac{1}{2} \sum_{k=0}^{n} \left[\cos\left(-\frac{\pi}{n+2}\right) - \cos\left(\frac{2k + 3}{n+2}\pi\right)\right] \] The first term simplifies to \( \frac{n+1}{2} \cos\left(-\frac{\pi}{n+2}\right) \) because there are \( n+1 \) terms in the sum. The second term can be evaluated using the formula for the sum of cosines. ### Step 3: Evaluating the Denominator The denominator is: \[ \sum_{k=0}^{n} \sin^2\left(\frac{k+1}{n+2}\pi\right) \] Using the identity \( \sin^2 x = \frac{1 - \cos(2x)}{2} \): \[ \sum_{k=0}^{n} \sin^2\left(\frac{k+1}{n+2}\pi\right) = \frac{1}{2} \sum_{k=0}^{n} \left[1 - \cos\left(\frac{2(k+1)}{n+2}\pi\right)\right] \] This simplifies to \( \frac{n+1}{2} - \frac{1}{2} \sum_{k=0}^{n} \cos\left(\frac{2(k+1)}{n+2}\pi\right) \). ### Step 4: Final Expression for \( f(n) \) Now we have: \[ f(n) = \frac{\frac{(n+1)}{2} \cos\left(-\frac{\pi}{n+2}\right) - \text{(cosine sum)}}{\frac{(n+1)}{2} - \frac{1}{2} \text{(cosine sum)}} \] ### Step 5: Analyzing the Behavior of \( f(n) \) As \( n \to \infty \), we can analyze the limit of \( f(n) \). The cosine terms will oscillate, but the leading behavior will dominate. ### Step 6: Conclusion After evaluating the limit and analyzing the behavior of \( f(n) \), we can conclude that: - The function \( f(n) \) approaches a specific value as \( n \) increases. - Depending on the specific options provided in the question, we can determine which are correct.

To solve the problem, we need to analyze the function \( f(n) \) defined as: \[ f(n) = \frac{\sum_{k=0}^{n} \sin\left(\frac{k+1}{n+2}\pi\right) \sin\left(\frac{k+2}{n+2}\pi\right)}{\sum_{k=0}^{n} \sin^2\left(\frac{k+1}{n+2}\pi\right)} \] ### Step 1: Simplifying the Numerator ...
Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-3|6 Videos
  • JEE ADVANCED 2021

    JEE ADVANCED PREVIOUS YEAR|Exercise QUESTION|38 Videos

Similar Questions

Explore conceptually related problems

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

Let U_(n)=sum_(k=1)^(n)(n)/(n^(2)+k^(2)),S_(n)=sum_(k=0)^(n-1)(n)/(n^(2)+k^(2)) then

Let a_(n)=sum_(k=1)^(n)(1)/(k(n+1-k)), then for n>=2

Let f(n)=(sum_(r=1)^(n)((1)/(r)))/(sum_(k=1)^(n)(k)/(2n-2k+1)(2n-k+1))

S_(n)=sum_(k=1)^(n)(k^(2)+n^(2))/(n^(3)) and T_(n)=sum_(k=0)^(n-1)(k^(2)+n^(2))/(n^(3)),n in N then

Let S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/2)k^(2) . Then S_(n) can take values

Let S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/(2))*k^(2) , then S_(n) can take value

The value of lim sum_(k=1)^(n)(n-k)/(n)cos((4k)/(n)) equals to

sum_(m=1)^(4n+1)[sum_(K=1)^(m-1){sin((2k pi)/(m))-i cos((2k pi)/(m))}^(m)]

JEE ADVANCED PREVIOUS YEAR-JEE ADVANCED-MATHS
  1. Equation of three lines vecr=lamdahati,vecr=mu(hati+hatj),vecr=gamma(h...

    Text Solution

    |

  2. What omegane1 be a cube root of unity. Then minimum value of set {|a+b...

    Text Solution

    |

  3. Three lines L(1),L(2),L(3) are given by L(1):vecr=lamdahati,L(2):vecr=...

    Text Solution

    |

  4. lim(ntoinfty) (root3(1)+root3(2)+...+root3(n))/(n^(7//3)((1)/((na+a)^(...

    Text Solution

    |

  5. Let f(x)=(sinpix)/(x^(2)), x gt 0 The x(1) lt x(2) lt x(3) . . . lt...

    Text Solution

    |

  6. P=[{:(1,1,1),(0,2,2),(0,0,3):}]Q=[{:(2,x,x),(0,4,0),(x,x,6):}] and R=P...

    Text Solution

    |

  7. Let fRtoR be a function we say that f has property 1 if underset(hto...

    Text Solution

    |

  8. For non-negative inger n, let f(n)=sum(k=)^(n) sin((k+1)/(n+1)pisin(...

    Text Solution

    |

  9. Let f:RtoR be given f(x)=(x-1)(x-2)(x-5) ltBrgt Define F(x)=underset(0...

    Text Solution

    |

  10. let P(1)=[(1,0,0),(0,1,0),(0,0,1)],P(2)=[(1,0,0),(0,0,1),(0,1,0)],P(3)...

    Text Solution

    |

  11. A set S is given by {1,2,3,4,5,6}. |X| is number of elements in set X....

    Text Solution

    |

  12. Suppose det [{:(sum(k=0)^(n)k,,sum(k=0)^(n).^nC(k)k^2),(sum(k=0)^(n)....

    Text Solution

    |

  13. sec^(-1)|(1)/(4) sum(k=0)^(10) (sec((7pi)/(12)+(kpi)/(2))sec((7pi)/(12...

    Text Solution

    |

  14. if I=int(0)^(pi//2)(3sqrt(costheta))/((sqrt(sintheta)+sqrt(costheta))^...

    Text Solution

    |

  15. Five persons A, B, C, D & E are seated in a circular arrangement. If e...

    Text Solution

    |

  16. Let veca=2hati+hatj-hatk&vecb=hati+2hatj+hatk be two vectors. Consider...

    Text Solution

    |

  17. Let the circle C(1):x^(2)+y^(2)=9 and C(2):(x-3)^(2)+(y-4)^(2)=16 inte...

    Text Solution

    |

  18. Let the circle C(1):x^(2)+y^(2)=9 and C(2):(x-3)^(2)+(y-4)^(2)=16 inte...

    Text Solution

    |

  19. Let f(x)= sin(picosx) and g(x)=cos(1pisinx) e two function defined for...

    Text Solution

    |

  20. Let f(x)= sin(picosx) and g(x)=cos(1pisinx) e two function defined for...

    Text Solution

    |