Home
Class 12
MATHS
let P(1)=[(1,0,0),(0,1,0),(0,0,1)],P(2)=...

let `P_(1)=[(1,0,0),(0,1,0),(0,0,1)],P_(2)=[(1,0,0),(0,0,1),(0,1,0)],P_(3)=[(0,1,0),(1,0,0),(0,0,1)],P_(4)=[(0,1,0),(0,0,1),(1,0,0)],P_(5)=[(0,0,1),(1,0,0),(0,1,0)],P_(6)=[(0,0,1),(0,1,0),(1,0,0)]` and `X=sum_(k=1)^(6) P_(k)[(2,1,3),(1,0,2),(3,2,1)]P_(k)^(T)` Where `P_(k)^(T)` is transpose of matrix `P_(k)`. Then which of the following options is/are correct?

A

X is a symmetric matrix

B

if `X=[(1),(1),(1)]=alpha[(1),(1),(1)]`, then `alpha=30`

C

X-30I is an invertible matrix

D

The sum of diagonal entries of X is 18.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given matrices \( P_k \) and the expression for \( X \). ### Step 1: Understand the given matrices The matrices \( P_1, P_2, P_3, P_4, P_5, P_6 \) are defined as follows: \[ P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad P_3 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] \[ P_4 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad P_5 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad P_6 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \] ### Step 2: Define the matrix \( A \) The matrix \( A \) is given by: \[ A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 1 \end{pmatrix} \] ### Step 3: Calculate \( X \) The expression for \( X \) is: \[ X = \sum_{k=1}^{6} P_k A P_k^T \] Here, \( P_k^T \) is the transpose of the matrix \( P_k \). ### Step 4: Verify the symmetry of \( X \) To show that \( X \) is symmetric, we need to demonstrate that \( X^T = X \). Using the property of transpose: \[ X^T = \left( \sum_{k=1}^{6} P_k A P_k^T \right)^T = \sum_{k=1}^{6} (P_k A P_k^T)^T = \sum_{k=1}^{6} P_k^T A^T P_k \] Since \( P_k^T = P_k \) (as shown in the video), we have: \[ X^T = \sum_{k=1}^{6} P_k A P_k = X \] Thus, \( X \) is symmetric. ### Step 5: Calculate \( X \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \) Let \( B = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \). We need to compute \( X B \): \[ X B = \sum_{k=1}^{6} P_k A P_k^T B \] Since \( P_k^T B = P_k B \) and \( P_k B \) results in a vector that sums the entries of \( B \): \[ P_k B = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \text{ (for all k)} \] Thus, \[ X B = \sum_{k=1}^{6} P_k A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \] Calculating \( A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \): \[ A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 + 1 + 3 \\ 1 + 0 + 2 \\ 3 + 2 + 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \\ 6 \end{pmatrix} \] Thus, \[ X B = \sum_{k=1}^{6} P_k \begin{pmatrix} 6 \\ 3 \\ 6 \end{pmatrix} \] This results in: \[ X B = 6 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + 3 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + 6 \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 30 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \] Thus, \( \alpha = 30 \). ### Step 6: Check if \( X - 30I \) is invertible Since \( X B = 30 B \), we have: \[ (X - 30I) B = 0 \] This implies that \( X - 30I \) is not invertible. ### Step 7: Calculate the trace of \( X \) The trace of \( X \) is given by: \[ \text{trace}(X) = \text{trace}(P_1 A P_1^T) + \text{trace}(P_2 A P_2^T) + \ldots + \text{trace}(P_6 A P_6^T) \] Each \( P_k A P_k^T \) contributes to the trace, and since the trace of a product is invariant under cyclic permutations: \[ \text{trace}(P_k A P_k^T) = \text{trace}(A) \] Calculating the trace of \( A \): \[ \text{trace}(A) = 2 + 0 + 1 = 3 \] Thus, \[ \text{trace}(X) = 6 \cdot 3 = 18 \] ### Conclusion The correct options are: 1. \( X \) is a symmetric matrix. 2. \( \alpha = 30 \). 3. The sum of diagonal entries of \( X \) is 18.

To solve the problem step by step, we will analyze the given matrices \( P_k \) and the expression for \( X \). ### Step 1: Understand the given matrices The matrices \( P_1, P_2, P_3, P_4, P_5, P_6 \) are defined as follows: \[ P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad ...
Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-3|6 Videos
  • JEE ADVANCED 2021

    JEE ADVANCED PREVIOUS YEAR|Exercise QUESTION|38 Videos

Similar Questions

Explore conceptually related problems

If P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),(3,0),(4,1)] , find PQ.

The inverse of the matrix [(0,0,1),(0,1,0),(1,0,0)] is (A) [(0,0,1),(0,1,0),(1,0,0)] (B) [(0,0,-1),(0,-1,0),(-1,0,0)] (C) [(1,0,0),(0,1,0),(0,0,1)] (D) [(1/2,0,0),(0,1/2,0),(0,0,1/2)]

If A={:[(0,1,0),(1,0,0),(0,0,1)]:}," then "A^(-1)=

If P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2,-3),(-3,1,9),(0,0,-5)] then (PQ)^(-1) equals to

If A=[[0,0,1] , [0,1,0] , [1,0,0]] then A^6=

The truth table for the following combination of gates is (a) {:(A,B,Y),(0,0,0),(0,1,0),(1,0,1),(1,1,1):} (b) {:(A,B,Y),(0,0,0),(0,1,0),(1,0,0),(1,1,1):} (c) {:(A,B,Y),(0,0,1),(0,1,1),(1,0,1),(1,1,0):} (d) {:(A,B,Y),(0,0,0),(0,1,1),(1,0,1),(1,1,10):}

JEE ADVANCED PREVIOUS YEAR-JEE ADVANCED-MATHS
  1. Equation of three lines vecr=lamdahati,vecr=mu(hati+hatj),vecr=gamma(h...

    Text Solution

    |

  2. What omegane1 be a cube root of unity. Then minimum value of set {|a+b...

    Text Solution

    |

  3. Three lines L(1),L(2),L(3) are given by L(1):vecr=lamdahati,L(2):vecr=...

    Text Solution

    |

  4. lim(ntoinfty) (root3(1)+root3(2)+...+root3(n))/(n^(7//3)((1)/((na+a)^(...

    Text Solution

    |

  5. Let f(x)=(sinpix)/(x^(2)), x gt 0 The x(1) lt x(2) lt x(3) . . . lt...

    Text Solution

    |

  6. P=[{:(1,1,1),(0,2,2),(0,0,3):}]Q=[{:(2,x,x),(0,4,0),(x,x,6):}] and R=P...

    Text Solution

    |

  7. Let fRtoR be a function we say that f has property 1 if underset(hto...

    Text Solution

    |

  8. For non-negative inger n, let f(n)=sum(k=)^(n) sin((k+1)/(n+1)pisin(...

    Text Solution

    |

  9. Let f:RtoR be given f(x)=(x-1)(x-2)(x-5) ltBrgt Define F(x)=underset(0...

    Text Solution

    |

  10. let P(1)=[(1,0,0),(0,1,0),(0,0,1)],P(2)=[(1,0,0),(0,0,1),(0,1,0)],P(3)...

    Text Solution

    |

  11. A set S is given by {1,2,3,4,5,6}. |X| is number of elements in set X....

    Text Solution

    |

  12. Suppose det [{:(sum(k=0)^(n)k,,sum(k=0)^(n).^nC(k)k^2),(sum(k=0)^(n)....

    Text Solution

    |

  13. sec^(-1)|(1)/(4) sum(k=0)^(10) (sec((7pi)/(12)+(kpi)/(2))sec((7pi)/(12...

    Text Solution

    |

  14. if I=int(0)^(pi//2)(3sqrt(costheta))/((sqrt(sintheta)+sqrt(costheta))^...

    Text Solution

    |

  15. Five persons A, B, C, D & E are seated in a circular arrangement. If e...

    Text Solution

    |

  16. Let veca=2hati+hatj-hatk&vecb=hati+2hatj+hatk be two vectors. Consider...

    Text Solution

    |

  17. Let the circle C(1):x^(2)+y^(2)=9 and C(2):(x-3)^(2)+(y-4)^(2)=16 inte...

    Text Solution

    |

  18. Let the circle C(1):x^(2)+y^(2)=9 and C(2):(x-3)^(2)+(y-4)^(2)=16 inte...

    Text Solution

    |

  19. Let f(x)= sin(picosx) and g(x)=cos(1pisinx) e two function defined for...

    Text Solution

    |

  20. Let f(x)= sin(picosx) and g(x)=cos(1pisinx) e two function defined for...

    Text Solution

    |