Home
Class 11
MATHS
Prove that cos 18^(@)-sin 18^(@)=sqrt(2)...

Prove that `cos 18^(@)-sin 18^(@)=sqrt(2)sin 27^(@)`

A

`sin 27^(@)`

B

`sqrt2 sin 27^(@)`

C

`cos 27^(@)`

D

`sqrt2 cos 27^(@)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise CRITICAL THINKING|34 Videos
  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise COMETITIVE THINKING|34 Videos
  • CIRCLE AND CONICS

    TARGET PUBLICATION|Exercise EVALUATION TEST|28 Videos
  • PROBABILITY

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos18^(@)-sin18^(0)=sqrt(2)sin27^(0)

Prove that: cos18^(@)-sin18^(0)=sqrt(2)sin27^(0)

If cos18^(@)-sin18^(@)=sqrt(n)sin27^(@) , then n=

If cos18^(@)-sin18^(@)=sqrt(x)sin27^(@) , then x=

sin18 ^ (@) =

cos18 ^ (@) - sin18 ^ (@) =

Prove that sin 12^(@) sin18^(@)sin42^(@) sin48^(@) sin 72^(@) sin78^(@)=(cos18^(@))/(32) .

(a) Prove that sin65^(@)+cos65^(@)=sqrt(2)cos 20^(@) (b) Prove that sin47^(@)+cos77^(@)=cos17^(@)

If cos x+sin x=sqrt(2)cos x, prove that that cos x-sin x=sqrt(2)sin x

Prove that: sin65^(@)+cos65^(0)=sqrt(2)cos20^(@)