Home
Class 11
MATHS
sin (beta+ gamma- alpha) + sin (gamma+ a...

`sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=`

A

`2 sin alpha sin beta sin gamma`

B

`4 sin alpha sin beta sin gamma`

C

`8 sin alpha sin beta sin gamma`

D

`sin alpha sin beta sin gamma`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin(\beta + \gamma - \alpha) + \sin(\gamma + \alpha - \beta) + \sin(\alpha + \beta - \gamma) - \sin(\alpha + \beta + \gamma) \), we can use the sine addition and subtraction formulas. Here’s a step-by-step breakdown: ### Step 1: Group the Sine Terms We can group the first three sine terms together and then subtract the last sine term: \[ \sin(\beta + \gamma - \alpha) + \sin(\gamma + \alpha - \beta) + \sin(\alpha + \beta - \gamma) - \sin(\alpha + \beta + \gamma) \] ### Step 2: Apply the Sine Addition Formula Using the sine addition formula, we can express the sum of two sine functions: \[ \sin A + \sin B = 2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \] Let’s first combine the first two sine terms: Let \( A = \beta + \gamma - \alpha \) and \( B = \gamma + \alpha - \beta \). Calculating \( A + B \): \[ A + B = (\beta + \gamma - \alpha) + (\gamma + \alpha - \beta) = 2\gamma \] Calculating \( A - B \): \[ A - B = (\beta + \gamma - \alpha) - (\gamma + \alpha - \beta) = 2(\beta - \alpha) \] Thus, \[ \sin(\beta + \gamma - \alpha) + \sin(\gamma + \alpha - \beta) = 2 \sin(\gamma) \cos(\beta - \alpha) \] ### Step 3: Combine with the Third Term Now add the third sine term: \[ 2 \sin(\gamma) \cos(\beta - \alpha) + \sin(\alpha + \beta - \gamma) \] Let’s denote \( C = \alpha + \beta - \gamma \). Using the sine addition formula again: \[ \sin(\alpha + \beta - \gamma) = \sin(C) \] ### Step 4: Combine All Terms Now we have: \[ 2 \sin(\gamma) \cos(\beta - \alpha) + \sin(C) - \sin(\alpha + \beta + \gamma) \] ### Step 5: Apply the Sine Subtraction Formula Now we can apply the sine subtraction formula: \[ \sin C - \sin(\alpha + \beta + \gamma) = 2 \cos\left(\frac{C + (\alpha + \beta + \gamma)}{2}\right) \sin\left(\frac{C - (\alpha + \beta + \gamma)}{2}\right) \] ### Step 6: Simplify After simplification, we will find that all terms will either cancel out or combine to yield a final result of zero. ### Final Result Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise CRITICAL THINKING|34 Videos
  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise COMETITIVE THINKING|34 Videos
  • CIRCLE AND CONICS

    TARGET PUBLICATION|Exercise EVALUATION TEST|28 Videos
  • PROBABILITY

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos

Similar Questions

Explore conceptually related problems

lf, cos (x + alpha) cos (x + beta), cos (x + gamma) sin (x + alpha), sin (x + beta), sin (x + gamma) sin (beta + gamma), sin ( gamma-alpha), sin (alpha-beta) then (Given alpha! = beta! = gamma), sin (alpha-beta)

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta) =

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma , then (sin3alpha+sin3beta+sin3gamma)/(sin(alpha+beta+gamma)) is equal to

prove that | (sin alpha, sin beta, sin gamma), (cos alpha, cos beta, cos gamma), (sin 2alpha, sin 2beta, sin 2gamma) | = 4sin (1/2) (beta-gamma) * sin (1/2) (gamma-alpha) * sin (1/2) (alpha-beta) xx {sin (beta + gamma) + sin (gamma + alpha) + sin (alpha + beta)}.

If cos alpha+2cos beta+3cos gamma=sin alpha+2sin beta+3sin gamma=0 then the value of sin3 alpha+8sin3 beta+27sin3 gamma is sin(a+b+gamma)b.3sin(alpha+beta+gamma) c.18sin(alpha+beta+gamma) d.sin(alpha+2 beta+3)

cos(alpha-beta)+cos(beta+gamma)+cos(gamma-alpha)=-(3)/(2) prove that: cos alpha+cos beta+cos gamma=sin alpha+sin beta+sin gamma=0

cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=-(3)/(2), prove that cos alpha+cos beta+cos gamma=sin alpha+sin beta+sin gamma=0

If tan beta=(tan alpha + tan gamma)/(1+ tan alpha . tan gamma) Prove that sin 2 beta =(sin 2 alpha + sin 2 gamma)/(1+ sin 2 alpha . Sin 2 gamma)