Home
Class 11
MATHS
The value of cos 75^(@) cos 15^(@) is eq...

The value of `cos 75^(@) cos 15^(@)` is equal to

A

`1/2`

B

`(1)/(sqrt2)`

C

`1/4`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos 75^\circ \cos 15^\circ \), we can use the product-to-sum identities. Here’s a step-by-step solution: ### Step 1: Use the product-to-sum identity The product-to-sum identity states that: \[ 2 \cos A \cos B = \cos(A - B) + \cos(A + B) \] In our case, we have \( A = 75^\circ \) and \( B = 15^\circ \). ### Step 2: Rewrite the expression To apply the identity, we can multiply and divide by 2: \[ \cos 75^\circ \cos 15^\circ = \frac{1}{2} \cdot 2 \cos 75^\circ \cos 15^\circ = \frac{1}{2} \left( \cos(75^\circ - 15^\circ) + \cos(75^\circ + 15^\circ) \right) \] ### Step 3: Calculate the angles Now, calculate \( 75^\circ - 15^\circ \) and \( 75^\circ + 15^\circ \): \[ 75^\circ - 15^\circ = 60^\circ \] \[ 75^\circ + 15^\circ = 90^\circ \] ### Step 4: Substitute back into the expression Now substitute these values back into the equation: \[ \cos 75^\circ \cos 15^\circ = \frac{1}{2} \left( \cos 60^\circ + \cos 90^\circ \right) \] ### Step 5: Use known values of cosine We know that: \[ \cos 60^\circ = \frac{1}{2} \quad \text{and} \quad \cos 90^\circ = 0 \] Substituting these values gives: \[ \cos 75^\circ \cos 15^\circ = \frac{1}{2} \left( \frac{1}{2} + 0 \right) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \] ### Final Answer Thus, the value of \( \cos 75^\circ \cos 15^\circ \) is: \[ \frac{1}{4} \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise CRITICAL THINKING|34 Videos
  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise COMETITIVE THINKING|34 Videos
  • CIRCLE AND CONICS

    TARGET PUBLICATION|Exercise EVALUATION TEST|28 Videos
  • PROBABILITY

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos

Similar Questions

Explore conceptually related problems

The value of cos 15^(@) - sin 15^(@) is equal to

The value of cos 15^(@) - sin 15^(@) is

cos ec15^(@)+sec15^(@) is equal to

The value of cos15^(@)-sin15^(@) is

Find the value of cos 75^(@)

Find the value of cos 75^@

derive value of cos15^(@)

cos15^(@)-cos75^(@)=