Home
Class 11
MATHS
If alpha + beta + gamma=pi, then the va...

If `alpha + beta + gamma=pi, ` then the value of `sin ^(2) alpha + sin ^(2) beta - sin^(2) gamma `is equal to

A

`2 sin alpha `

B

`2 sin alpha cos beta sin gamma`

C

`2 sin alpha sin beta cos gamma`

D

`2 sin alpha sin beta sin gamma`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin^2 \alpha + \sin^2 \beta - \sin^2 \gamma \) given that \( \alpha + \beta + \gamma = \pi \), we can follow these steps: ### Step 1: Use the identity for sine We know that \( \sin^2 \gamma = \sin^2(\pi - (\alpha + \beta)) \). Using the identity \( \sin(\pi - x) = \sin x \), we have: \[ \sin^2 \gamma = \sin^2(\alpha + \beta) \] ### Step 2: Expand \( \sin^2(\alpha + \beta) \) Using the sine addition formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] Thus, \[ \sin^2(\alpha + \beta) = (\sin \alpha \cos \beta + \cos \alpha \sin \beta)^2 \] Expanding this, we get: \[ \sin^2(\alpha + \beta) = \sin^2 \alpha \cos^2 \beta + 2 \sin \alpha \cos \beta \cos \alpha \sin \beta + \cos^2 \alpha \sin^2 \beta \] ### Step 3: Substitute back into the expression Now substituting this back into our original expression: \[ \sin^2 \alpha + \sin^2 \beta - \sin^2 \gamma = \sin^2 \alpha + \sin^2 \beta - \sin^2(\alpha + \beta) \] This becomes: \[ \sin^2 \alpha + \sin^2 \beta - (\sin^2 \alpha \cos^2 \beta + 2 \sin \alpha \cos \beta \cos \alpha \sin \beta + \cos^2 \alpha \sin^2 \beta) \] ### Step 4: Simplify the expression Combining like terms, we have: \[ \sin^2 \alpha + \sin^2 \beta - \sin^2 \alpha \cos^2 \beta - 2 \sin \alpha \cos \beta \cos \alpha \sin \beta - \cos^2 \alpha \sin^2 \beta \] This can be rearranged to: \[ \sin^2 \alpha (1 - \cos^2 \beta) + \sin^2 \beta (1 - \cos^2 \alpha) - 2 \sin \alpha \cos \beta \cos \alpha \sin \beta \] Using the identity \( 1 - \cos^2 x = \sin^2 x \): \[ \sin^2 \alpha \sin^2 \beta + \sin^2 \beta \sin^2 \alpha - 2 \sin \alpha \cos \beta \cos \alpha \sin \beta \] ### Step 5: Final result This simplifies to: \[ \sin^2 \alpha + \sin^2 \beta - \sin^2(\alpha + \beta) = \sin^2 \alpha + \sin^2 \beta - \sin^2 \gamma = \sin^2 \alpha + \sin^2 \beta - \sin^2(\pi - (\alpha + \beta)) \] Thus, the final answer is: \[ \sin^2 \alpha + \sin^2 \beta - \sin^2 \gamma = 1 \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise CRITICAL THINKING|34 Videos
  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise COMETITIVE THINKING|34 Videos
  • CIRCLE AND CONICS

    TARGET PUBLICATION|Exercise EVALUATION TEST|28 Videos
  • PROBABILITY

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos

Similar Questions

Explore conceptually related problems

If sin alpha+sin beta+sin gamma=0=cos alpha+cos beta+cos gamma, then the value of sin^(2)alpha+sin^(2)beta+sin^(2)gamma, is

If alpha + beta- gamma= pi , prove that sin^(2)alpha + sin^(2)beta - sin^(2)gamma = 2sin alpha sin beta cos gamma .

If alpha+beta-gamma=pi , then sin^(2)alpha=sin^(2)beta-sin^(2)gamma is equal to

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then (a) sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma = (3) / ( 2) (b) sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma = (3) / (4) (c) cos ^ (alpha) + cos ^ (2) beta + cos ^ (2) gamma = (3) / (2) (d) cos ^ (2) alpha + cos2 beta + cos2 gamma = -1

2tan ^ (2) alpha tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha find the value of sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma

If sin alpha + sin beta + sin gamma=3, " then " sin^(3) alpha+ sin^(3)beta+ sin^(3) gamma= _________

cos alpha+cos beta+cos gamma=0sin alpha+sin beta+sin gamma=0 then the value of sin^(4)alpha+sin^(4)beta+sin^(4)gamma

If cos alpha, cos beta, cos gamma are the direction cosines of a line then the value of sin^(2) alpha + sin^(2) beta + sin^(2) gamma is__________