Home
Class 11
MATHS
cos ^(2) alpha + cos ^(2) (alpha + 120^(...

`cos ^(2) alpha + cos ^(2) (alpha + 120^(@)) + cos ^(2) (alpha - 120^(@))` is equal to

A

`3/2`

B

`1`

C

`1/2`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^2 \alpha + \cos^2 (\alpha + 120^\circ) + \cos^2 (\alpha - 120^\circ) \), we can follow these steps: ### Step 1: Use the Cosine Addition Formula We know that: \[ \cos(\alpha + 120^\circ) = \cos \alpha \cos 120^\circ - \sin \alpha \sin 120^\circ \] \[ \cos(\alpha - 120^\circ) = \cos \alpha \cos (-120^\circ) - \sin \alpha \sin (-120^\circ) \] Using the values \( \cos 120^\circ = -\frac{1}{2} \) and \( \sin 120^\circ = \frac{\sqrt{3}}{2} \), we can write: \[ \cos(\alpha + 120^\circ) = \cos \alpha \left(-\frac{1}{2}\right) - \sin \alpha \left(\frac{\sqrt{3}}{2}\right) \] \[ \cos(\alpha - 120^\circ) = \cos \alpha \left(-\frac{1}{2}\right) + \sin \alpha \left(\frac{\sqrt{3}}{2}\right) \] ### Step 2: Substitute and Simplify Now substituting these values into the original expression: \[ \cos^2 \alpha + \left(-\frac{1}{2} \cos \alpha - \frac{\sqrt{3}}{2} \sin \alpha\right)^2 + \left(-\frac{1}{2} \cos \alpha + \frac{\sqrt{3}}{2} \sin \alpha\right)^2 \] ### Step 3: Expand the Squares Expanding the squares: \[ \left(-\frac{1}{2} \cos \alpha - \frac{\sqrt{3}}{2} \sin \alpha\right)^2 = \frac{1}{4} \cos^2 \alpha + \frac{3}{4} \sin^2 \alpha + \frac{\sqrt{3}}{2} \cos \alpha \sin \alpha \] \[ \left(-\frac{1}{2} \cos \alpha + \frac{\sqrt{3}}{2} \sin \alpha\right)^2 = \frac{1}{4} \cos^2 \alpha + \frac{3}{4} \sin^2 \alpha - \frac{\sqrt{3}}{2} \cos \alpha \sin \alpha \] ### Step 4: Combine All Terms Now, adding all the terms together: \[ \cos^2 \alpha + \left(\frac{1}{4} \cos^2 \alpha + \frac{3}{4} \sin^2 \alpha + \frac{\sqrt{3}}{2} \cos \alpha \sin \alpha\right) + \left(\frac{1}{4} \cos^2 \alpha + \frac{3}{4} \sin^2 \alpha - \frac{\sqrt{3}}{2} \cos \alpha \sin \alpha\right) \] Combining like terms: \[ \cos^2 \alpha + \frac{1}{2} \cos^2 \alpha + \frac{3}{2} \sin^2 \alpha = \frac{3}{2} \cos^2 \alpha + \frac{3}{2} \sin^2 \alpha \] ### Step 5: Use Pythagorean Identity Using the identity \( \cos^2 \alpha + \sin^2 \alpha = 1 \): \[ \frac{3}{2} (\cos^2 \alpha + \sin^2 \alpha) = \frac{3}{2} \cdot 1 = \frac{3}{2} \] ### Final Result Thus, the expression simplifies to: \[ \cos^2 \alpha + \cos^2 (\alpha + 120^\circ) + \cos^2 (\alpha - 120^\circ) = \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise COMETITIVE THINKING|34 Videos
  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos
  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos
  • CIRCLE AND CONICS

    TARGET PUBLICATION|Exercise EVALUATION TEST|28 Videos
  • PROBABILITY

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos

Similar Questions

Explore conceptually related problems

cos^(2)alpha+cos^(2)(alpha+120^(@))+cos^(2)(alpha-120^(@))=(3)/(2)

sin ^ (2) alpha + sin ^ (2) (120 ^ (@) + alpha) + sin ^ (2) (120 ^ (@) - alpha) =

Prove that: cos ^ (2) alpha + cos ^ (2) (alpha + beta) -2cos alpha cos beta cos (alpha + beta) = sin ^ (2) beta

(cos alpha + cos beta) ^ (2) + (sin alpha-sin beta) ^ (2) = 4 (cos ^ (2) (alpha + beta)) / (2)

If A = cos ^(2) alpha + cos ^2(alpha + beta)- 2 cos alpha cos beta cos (alpha + beta), then

cos^(2)(45^(@)-alpha)+cos^(2)(15^(@)+alpha)-cos^(2)(15^(0)-alpha)=

The expression cos^(2)(alpha + beta + gamma) + cos^(2)(beta + gamma) + cos^(2)alpha - 2cos alpha cos(beta + gamma)cos(alpha + beta + gamma) is

TARGET PUBLICATION-FACTORIZATION FORMULAE-CRITICAL THINKING
  1. If cosx+cosy+cosalpha=0 and sinx+siny+sinalpha=0 then cot((x+y)/2)=

    Text Solution

    |

  2. (cos A+ cos B) ^(2) + (sin A-sin B) ^(2) is equal to

    Text Solution

    |

  3. cos ^(2) alpha + cos ^(2) (alpha + 120^(@)) + cos ^(2) (alpha - 120^(@...

    Text Solution

    |

  4. If (" cos " (A+B))/(" cos " (A-B)) =(" sin " (C+D))/(" sin " (C -D))...

    Text Solution

    |

  5. (sin^2A- sin^2B)/( sin A cos A-sin Bcos B) =tan(A+B)

    Text Solution

    |

  6. The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)...

    Text Solution

    |

  7. If cos A=3/4 then the value of sin(A/2) sin((5A)/2) is

    Text Solution

    |

  8. The value of sin ""(pi)/(16) sin ""(3pi)/(16) sin ""(5pi)/(16) sin ""(...

    Text Solution

    |

  9. sin 20^(@) sin 40^(@) sin 60^(@) sin 80^(@) =

    Text Solution

    |

  10. Prove that tan 20^(@) tan 40^(@) tan 80^(@)=tan 60^(@)

    Text Solution

    |

  11. The value of (tan 70^(@) - tan 20^(@))/( tan 50^(@))=

    Text Solution

    |

  12. The value of tan20^(@)+2 tan50^(@)-tan70^(@), is

    Text Solution

    |

  13. cosec 48^(@) + cosec 96^(@) + cosec 192^(@) + cosec 384^(@)=

    Text Solution

    |

  14. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi/7))=...

    Text Solution

    |

  15. The expression cos^(2)(A-B)+cos^(2)B-2cos(A-B)cosAcosB is

    Text Solution

    |

  16. If A=tan6^(@) tan 42^(@) and B= cot 66^(@)cot 78^(@) then-

    Text Solution

    |

  17. If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C...

    Text Solution

    |

  18. If A+B+C=pi , prove that cos 2A +cos 2B +cos 2C=-1-4cos A cos Bcos ...

    Text Solution

    |

  19. If x +y+z = 180^@, then cos2x + cos2y-cos2z is equal to

    Text Solution

    |

  20. If A+B+C=3pi/2. Then cos 2A +cos 2B+cos2C is equal to

    Text Solution

    |