Home
Class 11
MATHS
The value of sin ""(pi)/(16) sin ""(3pi)...

The value of `sin ""(pi)/(16) sin ""(3pi)/(16) sin ""(5pi)/(16) sin ""(7pi)/(16)` is

A

`1/16`

B

`(sqrt2)/(16)`

C

`1/8`

D

`(sqrt2)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin\left(\frac{\pi}{16}\right) \sin\left(\frac{3\pi}{16}\right) \sin\left(\frac{5\pi}{16}\right) \sin\left(\frac{7\pi}{16}\right) \), we can use a known product-to-sum formula. ### Step-by-step Solution: 1. **Recognize the Sine Product**: We need to evaluate the product of four sine functions. We can pair them to simplify the calculation: \[ \sin\left(\frac{\pi}{16}\right) \sin\left(\frac{7\pi}{16}\right) \quad \text{and} \quad \sin\left(\frac{3\pi}{16}\right) \sin\left(\frac{5\pi}{16}\right) \] 2. **Use the Identity**: We can use the identity: \[ \sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)] \] Applying this to our pairs: - For \( \sin\left(\frac{\pi}{16}\right) \sin\left(\frac{7\pi}{16}\right) \): \[ \sin\left(\frac{\pi}{16}\right) \sin\left(\frac{7\pi}{16}\right) = \frac{1}{2} \left[\cos\left(\frac{\pi}{16} - \frac{7\pi}{16}\right) - \cos\left(\frac{\pi}{16} + \frac{7\pi}{16}\right)\right] \] \[ = \frac{1}{2} \left[\cos\left(-\frac{6\pi}{16}\right) - \cos\left(\frac{8\pi}{16}\right)\right] \] \[ = \frac{1}{2} \left[\cos\left(\frac{3\pi}{8}\right) - 0\right] = \frac{1}{2} \cos\left(\frac{3\pi}{8}\right) \] - For \( \sin\left(\frac{3\pi}{16}\right) \sin\left(\frac{5\pi}{16}\right) \): \[ \sin\left(\frac{3\pi}{16}\right) \sin\left(\frac{5\pi}{16}\right) = \frac{1}{2} \left[\cos\left(\frac{3\pi}{16} - \frac{5\pi}{16}\right) - \cos\left(\frac{3\pi}{16} + \frac{5\pi}{16}\right)\right] \] \[ = \frac{1}{2} \left[\cos\left(-\frac{2\pi}{16}\right) - \cos\left(\frac{8\pi}{16}\right)\right] \] \[ = \frac{1}{2} \left[\cos\left(\frac{\pi}{8}\right) - 0\right] = \frac{1}{2} \cos\left(\frac{\pi}{8}\right) \] 3. **Combine the Results**: Now we can combine the results from both pairs: \[ \sin\left(\frac{\pi}{16}\right) \sin\left(\frac{7\pi}{16}\right) \sin\left(\frac{3\pi}{16}\right) \sin\left(\frac{5\pi}{16}\right) = \left(\frac{1}{2} \cos\left(\frac{3\pi}{8}\right)\right) \left(\frac{1}{2} \cos\left(\frac{\pi}{8}\right)\right) \] \[ = \frac{1}{4} \cos\left(\frac{3\pi}{8}\right) \cos\left(\frac{\pi}{8}\right) \] 4. **Final Calculation**: We can use the product-to-sum formula again on \( \cos\left(\frac{3\pi}{8}\right) \cos\left(\frac{\pi}{8}\right) \): \[ \cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)] \] Thus, \[ \cos\left(\frac{3\pi}{8}\right) \cos\left(\frac{\pi}{8}\right) = \frac{1}{2} \left[\cos\left(\frac{4\pi}{8}\right) + \cos\left(\frac{2\pi}{8}\right)\right] \] \[ = \frac{1}{2} \left[0 + \cos\left(\frac{\pi}{4}\right)\right] = \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{4} \] 5. **Final Result**: Therefore, \[ \sin\left(\frac{\pi}{16}\right) \sin\left(\frac{3\pi}{16}\right) \sin\left(\frac{5\pi}{16}\right) \sin\left(\frac{7\pi}{16}\right) = \frac{1}{4} \cdot \frac{\sqrt{2}}{4} = \frac{\sqrt{2}}{16} \] ### Final Answer: \[ \sin\left(\frac{\pi}{16}\right) \sin\left(\frac{3\pi}{16}\right) \sin\left(\frac{5\pi}{16}\right) \sin\left(\frac{7\pi}{16}\right) = \frac{\sqrt{2}}{16} \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise COMETITIVE THINKING|34 Videos
  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos
  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos
  • CIRCLE AND CONICS

    TARGET PUBLICATION|Exercise EVALUATION TEST|28 Videos
  • PROBABILITY

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos

Similar Questions

Explore conceptually related problems

The value of sin""(15pi)/(32)sin""(7pi)/(16)sin""(3pi)/(8), is

The value of sin""(pi)/(14).sin""(3pi)/(14).sin""(5pi)/(14).sin""(7pi)/(14).sin""(9pi)/(14).sin""(11pi)/(14).sin""(13pi)/(14) is

The value of sin""(pi)/(7)sin""(2pi)/(7)sin""(3pi)/(7), is

The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

TARGET PUBLICATION-FACTORIZATION FORMULAE-CRITICAL THINKING
  1. The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)...

    Text Solution

    |

  2. If cos A=3/4 then the value of sin(A/2) sin((5A)/2) is

    Text Solution

    |

  3. The value of sin ""(pi)/(16) sin ""(3pi)/(16) sin ""(5pi)/(16) sin ""(...

    Text Solution

    |

  4. sin 20^(@) sin 40^(@) sin 60^(@) sin 80^(@) =

    Text Solution

    |

  5. Prove that tan 20^(@) tan 40^(@) tan 80^(@)=tan 60^(@)

    Text Solution

    |

  6. The value of (tan 70^(@) - tan 20^(@))/( tan 50^(@))=

    Text Solution

    |

  7. The value of tan20^(@)+2 tan50^(@)-tan70^(@), is

    Text Solution

    |

  8. cosec 48^(@) + cosec 96^(@) + cosec 192^(@) + cosec 384^(@)=

    Text Solution

    |

  9. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi/7))=...

    Text Solution

    |

  10. The expression cos^(2)(A-B)+cos^(2)B-2cos(A-B)cosAcosB is

    Text Solution

    |

  11. If A=tan6^(@) tan 42^(@) and B= cot 66^(@)cot 78^(@) then-

    Text Solution

    |

  12. If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C...

    Text Solution

    |

  13. If A+B+C=pi , prove that cos 2A +cos 2B +cos 2C=-1-4cos A cos Bcos ...

    Text Solution

    |

  14. If x +y+z = 180^@, then cos2x + cos2y-cos2z is equal to

    Text Solution

    |

  15. If A+B+C=3pi/2. Then cos 2A +cos 2B+cos2C is equal to

    Text Solution

    |

  16. if A+B+C=pi then cosA/(sinBsinC)+cosB/(sinCsinA)+cosC/(sinAsinB)=

    Text Solution

    |

  17. If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)...

    Text Solution

    |

  18. Prove that: cos^2A+cos^2(A+pi/3)+cos^2(A-pi/3)=3/2

    Text Solution

    |

  19. If A+B+C=pi then prove that cos^2 (A/2)+cos^2 (B/2)-cos^2 (C/2)=2cos(A...

    Text Solution

    |

  20. In a triangle ABC, the value of sinA+sinB+sinC is

    Text Solution

    |