Home
Class 11
MATHS
If A, B, C are the angles of a triangle,...

If A, B, C are the angles of a triangle, then `sin 2A + sin 2B - sin 2C` is equal to

A

`4 sin A cos B cos C`

B

` 4 cos A`

C

` 4 sin A cos A`

D

`4 cos A cos B sin C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem `sin 2A + sin 2B - sin 2C` where A, B, and C are the angles of a triangle, we will use some trigonometric identities and properties of angles in a triangle. ### Step-by-Step Solution: 1. **Use the property of angles in a triangle:** Since A, B, and C are angles of a triangle, we know that: \[ A + B + C = \pi \] This implies: \[ A + B = \pi - C \] 2. **Substitute A + B into the sine function:** We can express `sin 2A + sin 2B` using the sine addition formula: \[ \sin 2A + \sin 2B = 2 \sin(A + B) \cos(A - B) \] Substituting \(A + B = \pi - C\): \[ \sin 2A + \sin 2B = 2 \sin(\pi - C) \cos(A - B) \] Since \(\sin(\pi - C) = \sin C\): \[ \sin 2A + \sin 2B = 2 \sin C \cos(A - B) \] 3. **Combine with the third term:** Now, we need to consider the expression: \[ \sin 2A + \sin 2B - \sin 2C \] We already have: \[ \sin 2A + \sin 2B = 2 \sin C \cos(A - B) \] Thus, we can write: \[ \sin 2A + \sin 2B - \sin 2C = 2 \sin C \cos(A - B) - \sin 2C \] 4. **Express sin 2C:** Using the double angle formula for sine: \[ \sin 2C = 2 \sin C \cos C \] Therefore, we can rewrite our expression: \[ 2 \sin C \cos(A - B) - 2 \sin C \cos C \] 5. **Factor out common terms:** Factoring out \(2 \sin C\): \[ 2 \sin C (\cos(A - B) - \cos C) \] 6. **Use the cosine subtraction formula:** We can use the identity for cosine subtraction: \[ \cos(A - B) - \cos C = -2 \sin\left(\frac{A + B + C}{2}\right) \sin\left(\frac{A + B - C}{2}\right) \] Since \(A + B + C = \pi\), we have: \[ \sin\left(\frac{A + B + C}{2}\right) = \sin\left(\frac{\pi}{2}\right) = 1 \] Therefore: \[ \cos(A - B) - \cos C = -2 \sin\left(\frac{C}{2}\right) \sin\left(\frac{A + B - C}{2}\right) \] 7. **Final expression:** Thus, we can express our final answer as: \[ \sin 2A + \sin 2B - \sin 2C = 4 \sin C \sin\left(\frac{A + B - C}{2}\right) \sin\left(\frac{C}{2}\right) \] ### Final Answer: \[ \sin 2A + \sin 2B - \sin 2C = 4 \sin C \cos A \cos B \]
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise COMETITIVE THINKING|34 Videos
  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos
  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos
  • CIRCLE AND CONICS

    TARGET PUBLICATION|Exercise EVALUATION TEST|28 Videos
  • PROBABILITY

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos

Similar Questions

Explore conceptually related problems

If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC is equal to

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

In triangle ABC,the value of sin2A+sin2B+sin2C is equal to

If A, B, C are angles of a triangle, then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC=?

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

TARGET PUBLICATION-FACTORIZATION FORMULAE-CRITICAL THINKING
  1. sin 20^(@) sin 40^(@) sin 60^(@) sin 80^(@) =

    Text Solution

    |

  2. Prove that tan 20^(@) tan 40^(@) tan 80^(@)=tan 60^(@)

    Text Solution

    |

  3. The value of (tan 70^(@) - tan 20^(@))/( tan 50^(@))=

    Text Solution

    |

  4. The value of tan20^(@)+2 tan50^(@)-tan70^(@), is

    Text Solution

    |

  5. cosec 48^(@) + cosec 96^(@) + cosec 192^(@) + cosec 384^(@)=

    Text Solution

    |

  6. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi/7))=...

    Text Solution

    |

  7. The expression cos^(2)(A-B)+cos^(2)B-2cos(A-B)cosAcosB is

    Text Solution

    |

  8. If A=tan6^(@) tan 42^(@) and B= cot 66^(@)cot 78^(@) then-

    Text Solution

    |

  9. If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C...

    Text Solution

    |

  10. If A+B+C=pi , prove that cos 2A +cos 2B +cos 2C=-1-4cos A cos Bcos ...

    Text Solution

    |

  11. If x +y+z = 180^@, then cos2x + cos2y-cos2z is equal to

    Text Solution

    |

  12. If A+B+C=3pi/2. Then cos 2A +cos 2B+cos2C is equal to

    Text Solution

    |

  13. if A+B+C=pi then cosA/(sinBsinC)+cosB/(sinCsinA)+cosC/(sinAsinB)=

    Text Solution

    |

  14. If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)...

    Text Solution

    |

  15. Prove that: cos^2A+cos^2(A+pi/3)+cos^2(A-pi/3)=3/2

    Text Solution

    |

  16. If A+B+C=pi then prove that cos^2 (A/2)+cos^2 (B/2)-cos^2 (C/2)=2cos(A...

    Text Solution

    |

  17. In a triangle ABC, the value of sinA+sinB+sinC is

    Text Solution

    |

  18. If A+B+C = 180^@ then (sin 2A + sin 2B + sin 2C) / (cosA + cosB + cosC...

    Text Solution

    |

  19. If alpha+beta+gamma=2pi then

    Text Solution

    |

  20. In a DeltaABC sum((cotA+cotB)/(tanA+tanB)) is equal to

    Text Solution

    |