Home
Class 11
MATHS
2cosx-cos3x-cos5x=...

`2cosx-cos3x-cos5x=`

A

`16 cos ^(3) x sin ^(2) x`

B

` 16 sin^(2) x cos ^(2) x`

C

` 4 cos ^(2) x sin ^(2) x`

D

` 4 sin ^(2) x cos ^(2)x`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos
  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise CRITICAL THINKING|34 Videos
  • CIRCLE AND CONICS

    TARGET PUBLICATION|Exercise EVALUATION TEST|28 Videos
  • PROBABILITY

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos

Similar Questions

Explore conceptually related problems

2cos x-cos3x-cos5x=

lim_(x->0) (cos2x-cos4x)/(cos3x-cos5x) =

To prove (cos5x+cos4x)/(1-2cos3x)=-cos2x-cos x

Lim_(xrarr0)(cos2x-cos4x)/(cos3x-cos5x)= (A) (3)/(4) (B) -(3)/(4) (C) (4)/(3) (D) -(4)/(3)

Solve: cos3x+cosx-cos2x=0

If cos3x+cosx-cos2x=0, then

Prove that: ("sin"3x+"sin"x)"sin"x+(cos3x-cosx)cosx=0

lim_(n->oo)(cosx+cos3x+cos5x+cos(2n-1)x)/n where x!=kpi, k in I

Prove that cos x+cos3x+cos5x+cos(2n-1)x=(sin2nx)/(2)sin x