Home
Class 11
MATHS
Given sin B =1/5*sin (2A +B) then tan (...

Given `sin B =1/5*sin (2A +B)` then `tan (A +B)= k tan A,` where k has the value equal to

A

`5/3`

B

`2/3`

C

`3/2`

D

`3/5`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • FACTORIZATION FORMULAE

    TARGET PUBLICATION|Exercise COMETITIVE THINKING|34 Videos
  • CIRCLE AND CONICS

    TARGET PUBLICATION|Exercise EVALUATION TEST|28 Videos
  • PROBABILITY

    TARGET PUBLICATION|Exercise EVALUATION TEST|8 Videos

Similar Questions

Explore conceptually related problems

If sin B=(sin(2A+B))/(5) then (tan(A+B))/(tan A)=?

If sinB=1/5sin(2A+B), then (tan(A+B))/(tanA) is equal to

sin B=3sin(2A+B), prove that2tan A+tan(A+B)=0

(sin2A + sin2B) / (sin2A-sin2B) = (tan (A + B)) / (tan (AB))

If tan A=(1-cos B)/(sin B), then tan2A=tan B

If 2 tan A=3 tan B, then (sin 2B)/(5-cos 2B) is equal to

If sin(A + B) = 1 and 2 sin (A - B) = 1, where 0 lt A, B lt pi/2 then what is tan A:tan B equal to?

If tan A= (1- cos B)/(sin B), then tan 2A is equal to

If an angle 'r' is divided in two parts A and B such that A-B=x and tan A: tan B=K:1 then the value of sin x is 1) (k+1)/(k-1)sin r, 2) (k)/(k+1)sin r 3) (k-1)/(k+1)sin r 4) None

If sin A = (3)/(5) and cos B = (12)/(13) . Then the value of (tan A - tan B)/(1 + tan A tan B) is equal to