Home
Class 12
MATHS
[(1,-1),(2,3)]=[(1,0),(0,1)] A,R(2) rarr...

`[(1,-1),(2,3)]=[(1,0),(0,1)] A,R_(2) rarr R_(2)-2R_(1)`gives

A

`[(1,-1),(0,1)]=[(1,0),(-2,1)]A`

B

`[(1,-1),(0,5)]=[(1,0),(-2,1)]A`

C

`[(1,-1),(0,5)]=[(1,0),(2,1)]A`

D

`[(1,-1),(0,5)]=[(1,0),(-2,0)]A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given, we need to perform the row operation specified on the matrix. The matrix we have is: \[ A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \] We are instructed to perform the row operation \( R_2 \rightarrow R_2 - 2R_1 \). ### Step-by-Step Solution: 1. **Identify the rows**: - The first row \( R_1 \) is \( (1, -1) \). - The second row \( R_2 \) is \( (2, 3) \). 2. **Calculate \( 2R_1 \)**: - Multiply each element of \( R_1 \) by 2: \[ 2R_1 = 2 \times (1, -1) = (2, -2) \] 3. **Perform the row operation**: - Now, we will subtract \( 2R_1 \) from \( R_2 \): \[ R_2 = R_2 - 2R_1 = (2, 3) - (2, -2) \] - Subtract the corresponding elements: \[ R_2 = (2 - 2, 3 - (-2)) = (0, 3 + 2) = (0, 5) \] 4. **Write the new matrix**: - After performing the row operation, the new matrix becomes: \[ A' = \begin{pmatrix} 1 & -1 \\ 0 & 5 \end{pmatrix} \] ### Final Answer: The resulting matrix after the row operation \( R_2 \rightarrow R_2 - 2R_1 \) is: \[ \begin{pmatrix} 1 & -1 \\ 0 & 5 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise CLASSICAL THINKING (2.3 APPLICATION OF MATRICES)|3 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CLASSICAL THINKING (MISCELLANEOUS)|2 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

A=[[1,0-1,3]],R_(1)harr R_(2)

If A= [{:(1," 2",-1),(3,-2," 5"):}] , then R_(1) harr R_(2) and C_(1) rarr C_(1) + 2C_(3) given

Let A={1,2,3} and let R_(1)={(1,1),(1,3),(3,1),(2,2),(2,1),(3,3)} R_(2)={(2,2),(3,1),(1,3)} R_(3)={(1,3),(3,3),R_(4)=AxxA Find whether or not each of the relations R_(1),R_(2),R_(3),R_(4) , on A is (a) reflexive (b) symmetric (c) transitive

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is

If A=[(2,-3,3),(2,2,3),(3,-2,2)] then C_(2)+2C_(1) and "then" R_(1)+R_(3) gives

Let A={1,2,3}, and let R_(1)={(1,1),(1,3),(1,1),(2,1),(2,1),(2,3)}R_(-)2={(2,2),3,1),(1,3)},R_(-)3={(1,3),(3,3)} Find whether or not each of the relations R_(1),R_(2),R_(3) on A is reflexive (ii) symmetric (iii) transitive.

If A=([(1)/(2),0-(1)/(3),-(1)/(3)]) then lim_(n rarr oo)sum_(r=1)^(n)r*A^(r-1)

Let A={(0,1,2,3} and define a relation R on A as follows: R={(0,0),(0,1), (0,3), (1,0),(1,1),(2,2),(3,0),(3,3)} , Is R reflexive? Symmetive? Transitive?

If A=[[1, 0], [-1, 3]] , then R_1 harr R_2 on A gives